Skip to content

Commit

Permalink
Bug fix: Correctly add noise to benchmark problems (facebook#3203)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: facebook#3203

There was this piece of incorrect logic:

```
df["mean"] = df["Y_true"] + np.random.normal(len(df)) * df["sem"]
```

`len(df)` is not the size/shape parameter; it's the mean. So this generates one single normal draw with mean `len(df)` and variance 1, then multiplies it by `df["sem"]`.

This diff fixes that.

Reviewed By: saitcakmak

Differential Revision: D67521651

fbshipit-source-id: ef6d66761ac2ea023782a7347e841f0bdba7c5ce
  • Loading branch information
esantorella authored and facebook-github-bot committed Dec 20, 2024
1 parent a9aeffb commit 433b38f
Show file tree
Hide file tree
Showing 2 changed files with 35 additions and 2 deletions.
2 changes: 1 addition & 1 deletion ax/benchmark/benchmark_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,7 +110,7 @@ def _add_noise(
else:
df["sem"] = noise_std_ser

df["mean"] = df["Y_true"] + np.random.normal(len(df)) * df["sem"]
df["mean"] = df["Y_true"] + np.random.normal(loc=0, scale=df["sem"])

else:
df["sem"] = 0.0
Expand Down
35 changes: 34 additions & 1 deletion ax/benchmark/tests/test_benchmark_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
import numpy as np

import torch
from ax.benchmark.benchmark_runner import BenchmarkRunner
from ax.benchmark.benchmark_runner import _add_noise, BenchmarkRunner
from ax.benchmark.benchmark_test_functions.botorch_test import BoTorchTestFunction
from ax.benchmark.benchmark_test_functions.surrogate import SurrogateTestFunction
from ax.benchmark.problems.synthetic.hss.jenatton import (
Expand All @@ -39,6 +39,7 @@
)
from botorch.test_functions.synthetic import Ackley, ConstrainedHartmann, Hartmann
from botorch.utils.transforms import normalize
from pandas import DataFrame
from pyre_extensions import none_throws


Expand Down Expand Up @@ -268,6 +269,38 @@ def test_runner(self) -> None:
):
BenchmarkRunner.deserialize_init_args({})

def test__add_noise(self) -> None:
np.random.seed(0)
y_true = np.arange(6)
arm_name = ["0_0", "0_1", "0_0", "0_1", "0_0", "0_1"]
metric_name = ["foo", "foo", "bar", "bar", "baz", "baz"]

df = DataFrame(
{"Y_true": y_true, "metric_name": metric_name, "arm_name": arm_name}
)

noise_stds = {"foo": 1, "bar": 2, "baz": 3}
arm_weights = {"0_0": 1, "0_1": 2}
result = _add_noise(df=df, noise_stds=noise_stds, arm_weights=arm_weights)
self.assertEqual(set(result.columns), set(df.columns) | {"mean", "sem"})
expected_sem = df["metric_name"].map(noise_stds) / np.sqrt(
df["arm_name"].map(arm_weights) / 3
)
self.assertEqual(result["sem"].tolist(), expected_sem.tolist())
noise = df["mean"] - df["Y_true"]
self.assertNotEqual(noise.std(), 0)

z_scores = noise / expected_sem
self.assertNotEqual(z_scores.std(), 0)

chi_squared_stat = (z_scores**2).sum()
# None of these assertions would have failed in 10M simulations.
# Each has some tolerance from the most extreme value seen in 10M sims.
self.assertGreater(chi_squared_stat, 0.005)
self.assertLess(chi_squared_stat, 45)
self.assertLess(np.abs(z_scores).min(), 2)
self.assertGreater(z_scores.max(), 0.05)

def test_heterogeneous_noise(self) -> None:
outcome_names = ["objective_0", "constraint"]
noise_dict = {"objective_0": 0.1, "constraint": 0.05}
Expand Down

0 comments on commit 433b38f

Please sign in to comment.