Skip to content

Approximate the FizzBuzz function using a neural network model in Tensorflow.

License

Notifications You must be signed in to change notification settings

j-w-yun/fizzbuzz_neural_network

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

fizzbuzz_neural_network

Approximating FizzBuzz

I am approximating the infamous FizzBuzz function:

def fizzbuzz(start, end):
    a = list()
    for i in range(start, end + 1):
        a.append(fb(i))
    return a

def fb(i):
    if i % 3 == 0 and i % 5 == 0:
        return "FizzBuzz"
    elif i % 3 == 0:
        return "Fizz"
    elif i % 5 == 0:
        return "Buzz"
    else:
        return i

From 1 to 100, the correct output should be:

['1' '2' 'Fizz' '4' 'Buzz' 'Fizz' '7' '8' 'Fizz' 'Buzz' '11' 'Fizz' '13'
 '14' 'FizzBuzz' '16' '17' 'Fizz' '19' 'Buzz' 'Fizz' '22' '23' 'Fizz'
 'Buzz' '26' 'Fizz' '28' '29' 'FizzBuzz' '31' '32' 'Fizz' '34' 'Buzz'
 'Fizz' '37' '38' 'Fizz' 'Buzz' '41' 'Fizz' '43' '44' 'FizzBuzz' '46' '47'
 'Fizz' '49' 'Buzz' 'Fizz' '52' '53' 'Fizz' 'Buzz' '56' 'Fizz' '58' '59'
 'FizzBuzz' '61' '62' 'Fizz' '64' 'Buzz' 'Fizz' '67' '68' 'Fizz' 'Buzz'
 '71' 'Fizz' '73' '74' 'FizzBuzz' '76' '77' 'Fizz' '79' 'Buzz' 'Fizz' '82'
 '83' 'Fizz' 'Buzz' '86' 'Fizz' '88' '89' 'FizzBuzz' '91' '92' 'Fizz' '94'
 'Buzz' 'Fizz' '97' '98' 'Fizz' 'Buzz']

My neural network is classifying each number into one of four categories:

0. Fizz
1. Buzz
2. FizzBuzz
3. None of the above

Required tools

import tensorflow as tf
import numpy as np

Preparing Data

I am encoding the X (input) values as 16-bit binary:

def binary_encode_16b_array(a):
    encoded_a = list()
    for elem in a:
        encoded_a.append(binary_encode_16b(elem))
    return np.array(encoded_a)

def binary_encode_16b(val):
    bin_arr = list()
    bin_str = format(val, '016b')
    for bit in bin_str:
        bin_arr.append(bit)
    return np.array(bin_arr)

And encoding the Y (output) values as one-hot vectors:

def one_hot_encode_array(a):
    encoded_a = list()
    for elem in a:
        encoded_a.append(one_hot_encode(elem))
    return np.array(encoded_a)

def one_hot_encode(val):
    if val == 'Fizz':
        return np.array([1, 0, 0, 0])
    elif val == 'Buzz':
        return np.array([0, 1, 0, 0])
    elif val == 'FizzBuzz':
        return np.array([0, 0, 1, 0])
    else:
        return np.array([0, 0, 0, 1])

which will categorize the 16-bit binary input data as one of the 4 possible categories specified by the FizzBuzz rule.

For example, if [0.03 -0.4 -0.4 0.4] is returned, the program knows not to print any of "Fizz", "Buzz", or "FizzBuzz":

# decoding values of Y
def one_hot_decode_array(x, y):
    decoded_a = list()
    for index, elem in enumerate(y):
        decoded_a.append(one_hot_decode(x[index], elem))
    return np.array(decoded_a)


def one_hot_decode(x, val):
    index = np.argmax(val)
    if index == 0:
        return 'Fizz'
    elif index == 1:
        return 'Buzz'
    elif index == 2:
        return 'FizzBuzz'
    elif index == 3:
        return x

Initializing Data

This is how I am dividing up the training and testing data:

# train with data that will not be tested
test_x_start = 1
test_x_end = 100
train_x_start = 101
train_x_end = 10000

test_x_raw = np.arange(test_x_start, test_x_end + 1)
test_x = binary_encode_16b_array(test_x_raw).reshape([-1, 16])
test_y_raw = fizzbuzz(test_x_start, test_x_end)
test_y = one_hot_encode_array(test_y_raw)

train_x_raw = np.arange(train_x_start, train_x_end + 1)
train_x = binary_encode_16b_array(train_x_raw).reshape([-1, 16])
train_y_raw = fizzbuzz(train_x_start, train_x_end)
train_y = one_hot_encode_array(train_y_raw)

so the model trains using values between 101 and 10000 and tests using values between 1 and 100.

Neural Network Model

My model architecture is simple, with 100 hidden neurons in one layer:

# define params
input_dim = 16
output_dim = 4
h1_dim = 100

# build graph
X = tf.placeholder(tf.float32, [None, input_dim])
Y = tf.placeholder(tf.float32, [None, output_dim])

h1_w = tf.Variable(tf.random_normal([input_dim, h1_dim], stddev=0.1))
h1_b = tf.Variable(tf.zeros([h1_dim]))
h1_z = tf.nn.relu(tf.matmul(X, h1_w) + h1_b)

fc_w = tf.Variable(tf.random_normal([h1_dim, output_dim], stddev=0.1))
fc_b = tf.Variable(tf.zeros([output_dim]))
Z = tf.matmul(h1_z, fc_w) + fc_b

# define cost
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=Z))

# define op
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)

# define accuracy
correct_prediction = tf.equal(tf.argmax(Z, 1), tf.argmax(Y, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)

Running the Model

For the sake of simplicity, I opted to omit batch training:

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for i in range(10000):
        sess.run(train_step, feed_dict={X: train_x, Y: train_y})

        train_accuracy = sess.run(accuracy, feed_dict={X: train_x, Y: train_y})
        print(i, ":", train_accuracy)

    output = sess.run(Z, feed_dict={X: test_x})
    decoded = one_hot_decode_array(test_x_raw, output)
    print(decoded)

Results

After about 5,000 iterations of train step, training accuracy converges to 1.0. Here is the following test output of the neural network model after 10,000 iterations of training:

    0 : 0.346061
    1 : 0.459596
    2 : 0.48404
    3 : 0.472828
    4 : 0.441515
    5 : 0.417071
    
    ...
    
    9998 : 1.0
    9999 : 1.0
    ['1' '2' 'Fizz' '4' 'Buzz' 'Fizz' '7' '8' 'Fizz' 'Buzz' '11' 'Fizz' '13'
     '14' 'FizzBuzz' '16' '17' 'Fizz' '19' 'Buzz' 'Fizz' '22' '23' 'Fizz'
     'Buzz' '26' 'Fizz' '28' '29' 'FizzBuzz' '31' '32' 'Fizz' '34' 'Buzz'
     'Fizz' '37' '38' 'Fizz' 'Buzz' '41' 'Fizz' '43' '44' 'FizzBuzz' '46' '47'
     'Fizz' '49' 'Buzz' 'Fizz' '52' '53' 'Fizz' 'Buzz' '56' 'Fizz' '58' '59'
     'FizzBuzz' '61' '62' 'Fizz' '64' 'Buzz' 'Fizz' '67' '68' 'Fizz' 'Buzz'
     '71' 'Fizz' '73' '74' 'FizzBuzz' '76' '77' 'Fizz' '79' 'Buzz' 'Fizz' '82'
     '83' 'Fizz' 'Buzz' '86' 'Fizz' '88' '89' 'FizzBuzz' '91' '92' 'Fizz' '94'
     'Buzz' 'Fizz' '97' '98' 'Fizz' 'Buzz']

This feedforward neural network model, despite its simplicity, without a priori knowledge of the modulo operation, successfully extrapolated the output of the FizzBuzz function in the domain that was excluded in its training data.

Go to Part 2 : Improving Model Accuracy.

About

Approximate the FizzBuzz function using a neural network model in Tensorflow.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages