Skip to content

Commit

Permalink
Feature/azaytsev/docs 2021 4 (openvinotoolkit#6447)
Browse files Browse the repository at this point in the history
* Added benchmark page changes

* Make the picture smaller

* Added Intel® Iris® Xe MAX Graphics

* Changed the TIP about DL WB

* Added Note on the driver for Intel® Iris® Xe MAX Graphics

* Fixed formatting

* Added the link to Intel® software for general purpose GPU capabilities

* OVSA ovsa_get_started updates

* Fixed link
  • Loading branch information
andrew-zaytsev authored Jun 29, 2021
1 parent af2fec9 commit a220a0a
Show file tree
Hide file tree
Showing 23 changed files with 531 additions and 380 deletions.
4 changes: 2 additions & 2 deletions docs/MO_DG/img/small_IR_graph_demonstration.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
53 changes: 28 additions & 25 deletions docs/benchmarks/performance_benchmarks_faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,31 +19,34 @@ All of the performance benchmarks were generated using the open-sourced tool wit

#### 6. What image sizes are used for the classification network models?
The image size used in the inference depends on the network being benchmarked. The following table shows the list of input sizes for each network model.
| **Model** | **Public Network** | **Task** | **Input Size** (Height x Width) |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------|-----------------------------------|
| [bert-large-uncased-whole-word-masking-squad](https://github.com/openvinotoolkit/open_model_zoo/tree/develop/models/intel/bert-large-uncased-whole-word-masking-squad-int8-0001) | BERT-large |question / answer |384|
| [deeplabv3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/deeplabv3) | DeepLab v3 Tf |semantic segmentation | 513x513 |
| [densenet-121-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/densenet-121-tf) | Densenet-121 Tf |classification | 224x224 |
| [facenet-20180408-102900-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/facenet-20180408-102900) | FaceNet TF | face recognition | 160x160 |
| [faster_rcnn_resnet50_coco-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/faster_rcnn_resnet50_coco) | Faster RCNN Tf | object detection | 600x1024 |
| [googlenet-v1-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/googlenet-v1-tf) | GoogLeNet_ILSVRC-2012 | classification | 224x224 |
| [inception-v3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/googlenet-v3) | Inception v3 Tf | classification | 299x299 |
| [mobilenet-ssd-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-ssd) | SSD (MobileNet)_COCO-2017_Caffe | object detection | 300x300 |
| [mobilenet-v1-1.0-224-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v1-1.0-224-tf) | MobileNet v1 Tf | classification | 224x224 |
| [mobilenet-v2-1.0-224-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-1.0-224) | MobileNet v2 Tf | classification | 224x224 |
| [mobilenet-v2-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-pytorch ) | Mobilenet V2 PyTorch | classification | 224x224 |
| [resnet-18-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-18-pytorch) | ResNet-18 PyTorch | classification | 224x224 |
| [resnet-50-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-pytorch) | ResNet-50 v1 PyTorch | classification | 224x224 |
| [resnet-50-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-tf) | ResNet-50_v1_ILSVRC-2012 | classification | 224x224 |
| [se-resnext-50-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/se-resnext-50) | Se-ResNext-50_ILSVRC-2012_Caffe | classification | 224x224 |
| [squeezenet1.1-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/squeezenet1.1) | SqueezeNet_v1.1_ILSVRC-2012_Caffe | classification | 227x227 |
| [ssd300-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd300) | SSD (VGG-16)_VOC-2007_Caffe | object detection | 300x300 |
| [yolo_v3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v3-tf) | TF Keras YOLO v3 Modelset | object detection | 300x300 |
| [yolo_v4-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v4-tf) | Yolo-V4 TF | object detection | 608x608 |
| [ssd_mobilenet_v1_coco-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd_mobilenet_v1_coco) | ssd_mobilenet_v1_coco | object detection | 300x300 |
| [ssdlite_mobilenet_v2-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) | ssd_mobilenet_v2 | object detection | 300x300 |
| [unet-camvid-onnx-0001](https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/intel/unet-camvid-onnx-0001/description/unet-camvid-onnx-0001.md) | U-Net | semantic segmentation | 368x480 |

| **Model** | **Public Network** | **Task** | **Input Size** (Height x Width) |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-----------------------------------|
| [bert-large-uncased-whole-word-masking-squad](https://github.com/openvinotoolkit/open_model_zoo/tree/develop/models/intel/bert-large-uncased-whole-word-masking-squad-int8-0001) | BERT-large |question / answer |384|
| [brain-tumor-segmentation-0001-MXNET](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/brain-tumor-segmentation-0001) | brain-tumor-segmentation-0001 | semantic segmentation | 128x128x128 |
| [brain-tumor-segmentation-0002-CF2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/brain-tumor-segmentation-0002) | brain-tumor-segmentation-0002 | semantic segmentation | 128x128x128 |
| [deeplabv3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/deeplabv3) | DeepLab v3 Tf | semantic segmentation | 513x513 |
| [densenet-121-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/densenet-121-tf) | Densenet-121 Tf | classification | 224x224 |
| [facenet-20180408-102900-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/facenet-20180408-102900) | FaceNet TF | face recognition | 160x160 |
| [faster_rcnn_resnet50_coco-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/faster_rcnn_resnet50_coco) | Faster RCNN Tf | object detection | 600x1024 |
| [inception-v4-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/develop/models/public/googlenet-v4-tf) | Inception v4 Tf (aka GoogleNet-V4) | classification | 299x299 |
| [inception-v3-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/googlenet-v3) | Inception v3 Tf | classification | 299x299 |
| [mobilenet-ssd-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-ssd) | SSD (MobileNet)_COCO-2017_Caffe | object detection | 300x300 |
| [mobilenet-v2-1.0-224-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-1.0-224) | MobileNet v2 Tf | classification | 224x224 |
| [mobilenet-v2-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/mobilenet-v2-pytorch ) | Mobilenet V2 PyTorch | classification | 224x224 |
| [resnet-18-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-18-pytorch) | ResNet-18 PyTorch | classification | 224x224 |
| [resnet-50-pytorch](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-pytorch) | ResNet-50 v1 PyTorch | classification | 224x224 |
| [resnet-50-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/resnet-50-tf) | ResNet-50_v1_ILSVRC-2012 | classification | 224x224 |
| [se-resnext-50-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/se-resnext-50) | Se-ResNext-50_ILSVRC-2012_Caffe | classification | 224x224 |
| [squeezenet1.1-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/squeezenet1.1) | SqueezeNet_v1.1_ILSVRC-2012_Caffe | classification | 227x227 |
| [ssd300-CF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd300) | SSD (VGG-16)_VOC-2007_Caffe | object detection | 300x300 |
| [yolo_v4-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/yolo-v4-tf) | Yolo-V4 TF | object detection | 608x608 |
| [ssd_mobilenet_v1_coco-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssd_mobilenet_v1_coco) | ssd_mobilenet_v1_coco | object detection | 300x300 |
| [ssdlite_mobilenet_v2-TF](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) | ssdlite_mobilenet_v2 | object detection | 300x300 |
| [unet-camvid-onnx-0001](https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/intel/unet-camvid-onnx-0001/description/unet-camvid-onnx-0001.md) | U-Net | semantic segmentation | 368x480 |
| [yolo-v3-tiny-tf](https://github.com/openvinotoolkit/open_model_zoo/tree/develop/models/public/yolo-v3-tiny-tf) | YOLO v3 Tiny | object detection | 416x416 |
| [ssd-resnet34-1200-onnx](https://github.com/openvinotoolkit/open_model_zoo/tree/develop/models/public/ssd-resnet34-1200-onnx) | ssd-resnet34 onnx model | object detection | 1200x1200 |
| [vgg19-caffe](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/vgg19-caffe2) | VGG-19 | classification | 224x224|

#### 7. Where can I purchase the specific hardware used in the benchmarking?
Intel partners with various vendors all over the world. Visit the [Intel® AI: In Production Partners & Solutions Catalog](https://www.intel.com/content/www/us/en/internet-of-things/ai-in-production/partners-solutions-catalog.html) for a list of Equipment Makers and the [Supported Devices](../IE_DG/supported_plugins/Supported_Devices.md) documentation. You can also remotely test and run models before purchasing any hardware by using [Intel® DevCloud for the Edge](http://devcloud.intel.com/edge/).

Expand Down
Loading

0 comments on commit a220a0a

Please sign in to comment.