Skip to content
This repository has been archived by the owner on Aug 30, 2024. It is now read-only.

load processed model automatically #86

Merged
merged 1 commit into from
Jan 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 7 additions & 5 deletions neural_speed/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ def get_model_type(model_config):
model_type = "chatglm2"
return model_type

def init(self, model_name, use_quant=True, use_cache=False, use_gptq=False, use_awq=False,
def init(self, model_name, use_quant=True, use_gptq=False, use_awq=False,
weight_dtype="int4", alg="sym", group_size=32,
scale_dtype="fp32", compute_dtype="int8", use_ggml=False):
self.config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
Expand Down Expand Up @@ -107,14 +107,17 @@ def init(self, model_name, use_quant=True, use_cache=False, use_gptq=False, use_
self.bin_file = fp32_bin
else:
self.bin_file = quant_bin
if use_cache and os.path.exists(self.bin_file):

if os.path.exists(self.bin_file):
print("{} existed, will use cache file. Otherwise please remove the file".
format(self.bin_file))
return

if use_gptq or use_awq:
convert_model(model_name, quant_bin, "f32")
return

if not use_cache or not os.path.exists(fp32_bin):
if not os.path.exists(fp32_bin):
convert_model(model_name, fp32_bin, "f32")
assert os.path.exists(fp32_bin), "Fail to convert pytorch model"

Expand All @@ -127,8 +130,7 @@ def init(self, model_name, use_quant=True, use_cache=False, use_gptq=False, use_
assert os.path.exists(quant_bin), "Fail to quantize model"

# clean
if not use_cache:
os.remove(fp32_bin)
os.remove(fp32_bin)

def init_from_bin(self, model_type, model_path, **generate_kwargs):
self.__import_package(model_type)
Expand Down
8 changes: 4 additions & 4 deletions scripts/cal_diff.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,10 @@ def cmpData(numa, numb):
args = parser.parse_args()

woq_configs = {
"fp32": {"use_cache":True, "not_quant":True},
# "ggml_int4": {"compute_dtype":"int8", "weight_dtype":"int4", "use_cache":True, "use_ggml":True},
"jblas_int4": {"compute_dtype":"int8", "weight_dtype":"int4", "use_cache":True},
# "jblas_int8": {"compute_dtype":"bf16", "weight_dtype":"int8", "use_cache":True},
"fp32": {"not_quant":True},
# "ggml_int4": {"compute_dtype":"int8", "weight_dtype":"int4", "use_ggml":True},
"jblas_int4": {"compute_dtype":"int8", "weight_dtype":"int4"},
# "jblas_int8": {"compute_dtype":"bf16", "weight_dtype":"int8"},
}
prompt = "What is the meaning of life?"

Expand Down
3 changes: 1 addition & 2 deletions scripts/perplexity.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def perplexity(model_name, dataset_name, **kwargs):
init_kwargs = {
k: kwargs[k]
for k in kwargs
if k in ['use_cache', 'compute_dtype', 'weight_dtype', 'scale_dtype', 'group_size', 'use_ggml']
if k in ['compute_dtype', 'weight_dtype', 'scale_dtype', 'group_size', 'use_ggml']
}
model.init(model_name, **init_kwargs)

Expand Down Expand Up @@ -186,7 +186,6 @@ def add_quant_args(parser: argparse.ArgumentParser):
type=str,
help="path to quantized weight; other quant args will be ignored if specified",
default="")
group.add_argument('--use_cache', action="store_true", help="Use local quantized model if file exists")
group.add_argument(
"--weight_dtype",
choices=["int4", "int8"],
Expand Down
10 changes: 5 additions & 5 deletions tests/test_python_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def test_llm_runtime(self):
print(tokenizer.decode(pt_generate_ids))

# check output ids
woq_config_fp32 = {"use_quant":False, "compute_dtype":"fp32", "weight_dtype":"fp32", "use_cache":True, "use_ggml":False, "group_size":128}
woq_config_fp32 = {"use_quant":False, "compute_dtype":"fp32", "weight_dtype":"fp32", "use_ggml":False, "group_size":128}
itrex_model = Model()

itrex_model.init(model_name, use_quant=False)
Expand All @@ -65,10 +65,10 @@ def test_llm_runtime(self):

# check diff of logits
woq_configs = {
"fp32": {"use_cache":True, "use_quant":False},
# "ggml_int4": {"compute_dtype":"int8", "weight_dtype":"int4", "use_cache":True, "use_ggml":True},
"jblas_int4": {"compute_dtype":"int8", "weight_dtype":"int4", "use_cache":True},
# "jblas_int8": {"compute_dtype":"bf16", "weight_dtype":"int8", "use_cache":True},
"fp32": {"use_quant":False},
# "ggml_int4": {"compute_dtype":"int8", "weight_dtype":"int4", "use_ggml":True},
"jblas_int4": {"compute_dtype":"int8", "weight_dtype":"int4"},
# "jblas_int8": {"compute_dtype":"bf16", "weight_dtype":"int8"},
}
for config_type in woq_configs:
itrex_model = Model()
Expand Down