Skip to content

Commit

Permalink
Load libraries in a separated chunk
Browse files Browse the repository at this point in the history
  • Loading branch information
fouodo committed Jul 17, 2024
1 parent 26e79b5 commit 470e0ba
Show file tree
Hide file tree
Showing 2 changed files with 78 additions and 70 deletions.
2 changes: 1 addition & 1 deletion README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ Recent technological advances have enabled the simultaneous targeting of multipl

We introduce the fuseMLR package for late integration modeling in R. This package allows users to define studies with multiple layers, data entities, and layer-specific machine learning methods. FuseMLR is user-friendly, enabling the training of different models across layers and automatically conducting meta-analysis once layer-specific training is completed. Additionally, fuseMLR allows for variable selection at the layer level and makes predictions for new data entities.

`fuseMLR` object oriented based on the `R6` package version 2.5.1.
`fuseMLR` is an object-oriented package based on `R6` version 2.5.1.

### Installation

Expand Down
146 changes: 77 additions & 69 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
---
title: "fuseMLR"
author: Cesaire J. K. Fouodo
output:
md_document:
variant: gfm
preserve_yaml: true
---

<!-- badges: start -->

Expand Down Expand Up @@ -38,7 +46,7 @@ and automatically conducting meta-analysis once layer-specific training
is completed. Additionally, fuseMLR allows for variable selection at the
layer level and makes predictions for new data entities.

`fuseMLR` object oriented based on the `R6` package version 2.5.1.
`fuseMLR` is an object-oriented package based on `R6` version 2.5.1.

### Installation

Expand Down Expand Up @@ -224,49 +232,49 @@ print(var_sel_res)

## Layer variable
## 1 geneexpr ACACA
## 2 geneexpr ASNS
## 3 geneexpr BAP1
## 4 geneexpr CHEK2
## 5 geneexpr EIF4E
## 6 geneexpr MAP2K1
## 7 geneexpr MAPK14
## 8 geneexpr PCNA
## 9 geneexpr YWHAE
## 10 proteinexpr Bap1.c.4
## 11 proteinexpr Bid
## 12 proteinexpr Cyclin_E2
## 13 proteinexpr P.Cadherin
## 14 proteinexpr Chk1
## 15 proteinexpr Chk1_pS345
## 16 proteinexpr EGFR
## 17 proteinexpr EGFR_pY1173
## 18 proteinexpr HER3_pY1289
## 19 proteinexpr MIG.6
## 20 proteinexpr ETS.1
## 21 proteinexpr MEK1_pS217_S221
## 22 proteinexpr p38_MAPK
## 23 proteinexpr c.Met_pY1235
## 24 proteinexpr N.Ras
## 25 proteinexpr PEA15_pS116
## 26 proteinexpr PKC.delta_pS664
## 27 proteinexpr Rad50
## 28 proteinexpr C.Raf_pS338
## 29 proteinexpr p70S6K
## 30 proteinexpr p70S6K_pT389
## 31 proteinexpr Smad4
## 32 proteinexpr STAT3_pY705
## 33 proteinexpr 14.3.3_epsilon
## 34 methylation cg20139214
## 35 methylation cg18457775
## 36 methylation cg24747396
## 37 methylation cg01306510
## 38 methylation cg02412050
## 39 methylation cg07566050
## 40 methylation cg02630105
## 41 methylation cg20849549
## 42 methylation cg25539131
## 43 methylation cg07064406
## 44 methylation cg11816577
## 2 geneexpr BAP1
## 3 geneexpr CHEK2
## 4 geneexpr EIF4E
## 5 geneexpr MAP2K1
## 6 geneexpr MAPK14
## 7 geneexpr PCNA
## 8 geneexpr SMAD4
## 9 geneexpr SQSTM1
## 10 geneexpr YWHAE
## 11 proteinexpr Bap1.c.4
## 12 proteinexpr Bid
## 13 proteinexpr Cyclin_E2
## 14 proteinexpr P.Cadherin
## 15 proteinexpr Chk1
## 16 proteinexpr Chk1_pS345
## 17 proteinexpr EGFR
## 18 proteinexpr EGFR_pY1173
## 19 proteinexpr HER3_pY1289
## 20 proteinexpr MIG.6
## 21 proteinexpr ETS.1
## 22 proteinexpr MEK1_pS217_S221
## 23 proteinexpr p38_MAPK
## 24 proteinexpr c.Met_pY1235
## 25 proteinexpr N.Ras
## 26 proteinexpr PCNA
## 27 proteinexpr PEA15_pS116
## 28 proteinexpr PKC.delta_pS664
## 29 proteinexpr Rad50
## 30 proteinexpr C.Raf_pS338
## 31 proteinexpr p70S6K
## 32 proteinexpr p70S6K_pT389
## 33 proteinexpr Smad4
## 34 proteinexpr STAT3_pY705
## 35 proteinexpr 14.3.3_epsilon
## 36 methylation cg20139214
## 37 methylation cg18457775
## 38 methylation cg01306510
## 39 methylation cg02412050
## 40 methylation cg07566050
## 41 methylation cg02630105
## 42 methylation cg20849549
## 43 methylation cg25539131
## 44 methylation cg07064406

For each layer, the variable selection results show the chosen
variables. In this example, we perform variable selection on the entire
Expand Down Expand Up @@ -371,9 +379,9 @@ print(model_ge)
## Layer : geneexpr
## ind. id. : IDS
## target : disease
## n : 25
## n : 30
## Missing : 0
## p : 10
## p : 11

#### C) Predicting

Expand Down Expand Up @@ -422,29 +430,29 @@ print(new_predictions)
##
## $predicted_values
## IDS geneexpr proteinexpr methylation meta_layer
## 1 subject4 0.3486429 0.7254452 0.39821270 0.5065696
## 2 subject7 0.6563234 0.1913813 0.60077143 0.4633997
## 3 subject8 0.7697984 0.8252417 0.72493373 0.7749673
## 4 subject10 0.6770103 0.8271147 0.75742738 0.7609400
## 5 subject13 0.4164071 0.2048258 0.09259405 0.2251955
## 6 subject15 0.5557313 0.9379647 0.36718214 0.6331977
## 7 subject16 0.5701992 0.3528000 0.26069683 0.3817718
## 8 subject18 0.6497238 0.2932206 0.02371310 0.2996893
## 9 subject23 0.6612794 0.2485218 0.60419841 0.4873196
## 10 subject24 0.3336988 0.5391282 0.46320079 0.4552991
## 11 subject27 0.2748909 0.2293552 0.55319563 0.3542913
## 12 subject31 0.4272877 0.8598790 0.59272540 0.6461933
## 13 subject32 0.4388905 0.8694258 0.76771111 0.7136272
## 14 subject35 0.2083437 0.7910008 0.56550437 0.5497232
## 15 subject36 0.6707909 0.1662433 0.56591627 0.4459862
## 16 subject50 0.7561679 0.6132381 0.79458849 0.7160860
## 17 subject54 0.5675159 0.7214897 0.78051508 0.6988200
## 18 subject55 0.5815325 0.2319464 0.58723532 0.4529200
## 19 subject59 0.4597877 0.2770992 0.50990794 0.4089069
## 20 subject62 0.2760032 0.2478115 0.41481548 0.3135595
## 21 subject63 0.5786218 0.8238242 0.89740000 0.7806484
## 22 subject66 0.5528552 0.6825976 0.94541984 0.7373127
## 23 subject70 0.2690111 0.3042032 0.27120873 0.2829184
## 1 subject4 0.4284929 0.6236087 0.54089762 0.5366185
## 2 subject7 0.3945603 0.1347798 0.39843810 0.3031986
## 3 subject8 0.7740583 0.7649012 0.72124563 0.7526983
## 4 subject10 0.8138460 0.7197560 0.68419048 0.7358568
## 5 subject13 0.3990690 0.1749690 0.04975873 0.1994421
## 6 subject15 0.6226012 0.8045405 0.53131865 0.6562456
## 7 subject16 0.7231187 0.2866393 0.18147381 0.3818238
## 8 subject18 0.4848552 0.1877734 0.02350040 0.2208036
## 9 subject23 0.7821425 0.2133167 0.52539960 0.4912287
## 10 subject24 0.3355567 0.6086540 0.55799802 0.5092029
## 11 subject27 0.5103222 0.1461369 0.48094762 0.3703170
## 12 subject31 0.2733171 0.7369151 0.60301230 0.5516776
## 13 subject32 0.6264103 0.7453123 0.67544286 0.6856325
## 14 subject35 0.3754468 0.7400325 0.55803492 0.5680832
## 15 subject36 0.5930313 0.1646988 0.46518294 0.3964029
## 16 subject50 0.7730298 0.5586726 0.83126032 0.7164955
## 17 subject54 0.6100532 0.6796512 0.87089802 0.7242468
## 18 subject55 0.5157575 0.1851198 0.46629841 0.3808416
## 19 subject59 0.4551202 0.2035905 0.46137937 0.3675182
## 20 subject62 0.3280798 0.2101849 0.25384048 0.2605816
## 21 subject63 0.3223774 0.7519175 0.92001825 0.6803795
## 22 subject66 0.7428627 0.6247083 0.98381746 0.7832520
## 23 subject70 0.2834738 0.2386155 0.31945357 0.2797943

© 2024 Institute of Medical Biometry and Statistics (IMBS). All rights
reserved.

0 comments on commit 470e0ba

Please sign in to comment.