Skip to content

Commit

Permalink
Deployed 09067a5 with MkDocs version: 1.5.2
Browse files Browse the repository at this point in the history
  • Loading branch information
imarranz committed Aug 29, 2024
1 parent 636cc61 commit e1d4fee
Show file tree
Hide file tree
Showing 6 changed files with 111 additions and 75 deletions.
56 changes: 46 additions & 10 deletions 03_workflow/034_workflow_management_concepts.html
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,10 @@ <h3 id="models">Models<a class="headerlink" href="#models" title="Permanent link
<h4 id="crisp-dm_cross-industry_standard_process_for_data_mining">CRISP-DM (Cross-Industry Standard Process for Data Mining)<a class="headerlink" href="#crisp-dm_cross-industry_standard_process_for_data_mining" title="Permanent link">#</a></h4>
<p>CRISP-DM is a widely adopted model that provides a comprehensive framework for carrying out data mining projects. It consists of six phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment. This model emphasizes a cyclical process allowing for continuous improvements based on insights gained from previous iterations.</p>
<div align="center">
<div class="mermaid">graph TD
<div class="mermaid">---
title: CRISP-DM (Cross-Industry Standard Process for Data Mining)
---
graph TD
subgraph CRISP-DM
style CRISP-DM fill:#EEEEEE, stroke:#333, stroke-width:2px

Expand Down Expand Up @@ -265,34 +268,38 @@ <h4 id="crisp-dm_cross-industry_standard_process_for_data_mining">CRISP-DM (Cros
<h4 id="tdsp_team_data_science_process">TDSP (Team Data Science Process)<a class="headerlink" href="#tdsp_team_data_science_process" title="Permanent link">#</a></h4>
<p>Developed by Microsoft, TDSP structures projects into five key phases: business understanding, data acquisition and understanding, modeling, deployment, and customer acceptance. It stresses the importance of iterative learning and effective communication within data science teams.</p>
<div align="center">
<div class="mermaid">graph TD
<div class="mermaid">---
title: TDSP (Team Data Science Process)
---
graph TD

%% Definición del subgrafo y estilo
subgraph TDSP
style TDSP fill:#EEEEEE, stroke:#333, stroke-width:2px

%% Definición de los nodos
A(Start)
B(Business Understanding)
C(Data Accquisition &amp; Understanding)
D(Modeling)
E(Deployment)
F(End)


%% Conexiones entre nodos
A --&gt; B
B &lt;--&gt; C

B &lt;--&gt; D

C &lt;--&gt; D

D &lt;--&gt; E

E &lt;--&gt; C

E --&gt; F
end

%% Definición de estilo personalizado para los nodos
classDef miestilo fill:#8dc5e8,stroke:#333,stroke-width:2px
classDef subgraphTitle fill:#ffffff,stroke:#333,stroke-width:0px,font-size:16px

%% Aplicación del estilo personalizado a los nodos
class A,B,C,D,E,F miestilo


Expand All @@ -301,7 +308,10 @@ <h4 id="tdsp_team_data_science_process">TDSP (Team Data Science Process)<a class
<h4 id="kdd_knowledge_discovery_in_databases">KDD (Knowledge Discovery in Databases)<a class="headerlink" href="#kdd_knowledge_discovery_in_databases" title="Permanent link">#</a></h4>
<p>KDD is a non-linear, iterative process focusing on the discovery of actionable knowledge from large volumes of data. This process involves selection, preprocessing, transformation, data mining, and the interpretation of the discovered patterns.</p>
<div align="center">
<div class="mermaid">graph TD
<div class="mermaid">---
title: KDD (Knowledge Discovery in Databases)
---
graph TD
subgraph KDD
style KDD fill:#EEEEEE, stroke:#333, stroke-width:2px

Expand Down Expand Up @@ -334,7 +344,10 @@ <h4 id="kdd_knowledge_discovery_in_databases">KDD (Knowledge Discovery in Databa
<h4 id="guos_data_science_workflow">Guo's Data Science Workflow<a class="headerlink" href="#guos_data_science_workflow" title="Permanent link">#</a></h4>
<p>Guo's model is particularly useful for ensuring that data science projects are reproducible and transparent. It suggests a workflow where programming and exploratory data analysis are carried out in tandem, allowing for a deeper understanding and more robust analysis.</p>
<div align="center">
<div class="mermaid">graph LR
<div class="mermaid">---
title: Guo's Data Science Workflow
---
graph LR

subgraph GUO
style GUO fill:#FFFFFF, stroke:#333, stroke-width:2px
Expand Down Expand Up @@ -407,6 +420,29 @@ <h4 id="guos_data_science_workflow">Guo's Data Science Workflow<a class="headerl
class A,B,C,D,E,F,G,H,I,J,K,L,M,N,O miestilo

</div>
</div>
<div class="mermaid">sequenceDiagram

participant Sarah

participant John

Sarah-&gt;&gt;John: Hello John, how are you?

John--&gt;&gt;Sarah: Not too bad, thanks!


</div>
<div class="mermaid">gantt
title Example Gantt diagram
dateFormat YYYY-MM-DD
section Team 1
Research &amp; requirements :done, a1, 2020-03-08, 2020-04-10
Review &amp; documentation : after a1, 20d
section Team 2
Implementation :crit, active, 2020-03-25 , 20d
Testing :crit, 20d

</div>
</div>
</div><footer>
Expand Down
2 changes: 1 addition & 1 deletion 05_acquisition/0550_data_acquisition_and_preparation.html
Original file line number Diff line number Diff line change
Expand Up @@ -371,7 +371,7 @@ <h3 id="the_importance_of_data_cleaning_in_omics_sciences_focus_on_metabolomics"
<p><strong>Feature Selection</strong>: In metabolomics, feature selection methods help identify the most relevant metabolites associated with the biological question under investigation. By reducing the dimensionality of the data, these techniques improve model interpretability and enhance the detection of meaningful metabolic patterns.</p>
</li>
</ul>
<p>Data cleaning in metabolomics is a rapidly evolving field, and several tools and algorithms have been developed to address these challenges. Notable software packages include XCMS, MetaboAnalyst, and MZmine, which offer comprehensive functionalities for data preprocessing, quality control, and data cleaning in metabolomics studies.</p>
<p>Data cleaning in metabolomics is a rapidly evolving field, and several tools and algorithms have been developed to address these challenges. Notable software packages include <a href="https://xcmsonline.scripps.edu/">XCMS</a>, <a href="https://www.metaboanalyst.ca/">MetaboAnalyst</a>, and <a href="https://mzmine.github.io/mzmine_documentation/">MZmine</a>, which offer comprehensive functionalities for data preprocessing, quality control, and data cleaning in metabolomics studies.</p>

</div>
</div><footer>
Expand Down
2 changes: 1 addition & 1 deletion index.html
Original file line number Diff line number Diff line change
Expand Up @@ -354,5 +354,5 @@ <h3>Model Implementation and Maintenance</h3>

<!--
MkDocs version : 1.5.2
Build Date UTC : 2024-07-17 08:01:22.385321+00:00
Build Date UTC : 2024-08-29 14:51:00.851672+00:00
-->
2 changes: 1 addition & 1 deletion search/search_index.json

Large diffs are not rendered by default.

Loading

0 comments on commit e1d4fee

Please sign in to comment.