forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add m3exam dataloader * Small change in m3exam.py * Fix bug during downloading * Add meta feature to seacrowd schema for m3exam * Rename class M3Exam to M3ExamDataset * Add image question answering * Merge two source schemas into one for m3exam * Fix image path, choices and answer in m3exam
- Loading branch information
Showing
2 changed files
with
308 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import json | ||
import os | ||
import re | ||
import zipfile | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@article{zhang2023m3exam, | ||
title={M3Exam: A Multilingual, Multimodal, Multilevel Benchmark for Examining Large Language Models}, | ||
author={Wenxuan Zhang and Sharifah Mahani Aljunied and Chang Gao and Yew Ken Chia and Lidong Bing}, | ||
year={2023}, | ||
eprint={2306.05179}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.CL} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "m3exam" | ||
|
||
_DESCRIPTION = """\ | ||
M3Exam is a novel benchmark sourced from real and official human exam questions for evaluating LLMs\ | ||
in a multilingual, multimodal, and multilevel context. In total, M3Exam contains 12,317 questions in 9\ | ||
diverse languages with three educational levels, where about 23% of the questions require processing images\ | ||
for successful solving. M3Exam dataset covers 3 languages spoken in Southeast Asia. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/DAMO-NLP-SG/M3Exam" | ||
|
||
_LANGUAGES = ["jav", "tha", "vie"] | ||
_LANG_MAPPER = {"jav": "javanese", "tha": "thai", "vie": "vietnamese"} | ||
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value | ||
|
||
_LOCAL = False | ||
_PASSWORD = "12317".encode("utf-8") # password to unzip dataset after downloading | ||
_URLS = { | ||
_DATASETNAME: "https://drive.usercontent.google.com/download?id=1eREETRklmXJLXrNPTyHxQ3RFdPhq_Nes&authuser=0&confirm=t", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING, Tasks.VISUAL_QUESTION_ANSWERING] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class M3ExamDataset(datasets.GeneratorBasedBuilder): | ||
""" | ||
M3Exam is a novel benchmark sourced from real and official human exam questions for evaluating LLMs | ||
in a multilingual, multimodal, and multilevel context. In total, M3Exam contains 12,317 questions in 9 | ||
diverse languages with three educational levels, where about 23% of the questions require processing images | ||
for successful solving. M3Exam dataset covers 3 languages spoken in Southeast Asia. | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = ( | ||
[SEACrowdConfig(name=f"{_DATASETNAME}_{lang}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}") for lang in _LANGUAGES] | ||
+ [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{lang}_seacrowd_qa", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema="seacrowd_qa", | ||
subset_id=f"{_DATASETNAME}", | ||
) | ||
for lang in _LANGUAGES | ||
] | ||
+ [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_{lang}_seacrowd_imqa", | ||
version=datasets.Version(_SEACROWD_VERSION), | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema="seacrowd_imqa", | ||
subset_id=f"{_DATASETNAME}", | ||
) | ||
for lang in _LANGUAGES | ||
] | ||
) | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_jav_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
|
||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"question_text": datasets.Value("string"), | ||
"background_description": datasets.Sequence(datasets.Value("string")), | ||
"answer_text": datasets.Value("string"), | ||
"options": datasets.Sequence(datasets.Value("string")), | ||
"language": datasets.Value("string"), | ||
"level": datasets.Value("string"), | ||
"subject": datasets.Value("string"), | ||
"subject_category": datasets.Value("string"), | ||
"year": datasets.Value("string"), | ||
"need_image": datasets.Value("string"), | ||
"image_paths": datasets.Sequence(datasets.Value("string")), | ||
} | ||
) | ||
elif self.config.schema == "seacrowd_qa": | ||
features = schemas.qa_features | ||
features["meta"] = { | ||
"background_description": datasets.Sequence(datasets.Value("string")), | ||
"level": datasets.Value("string"), | ||
"subject": datasets.Value("string"), | ||
"subject_category": datasets.Value("string"), | ||
"year": datasets.Value("string"), | ||
} | ||
elif self.config.schema == "seacrowd_imqa": | ||
features = schemas.imqa_features | ||
features["meta"] = { | ||
"background_description": datasets.Sequence(datasets.Value("string")), | ||
"level": datasets.Value("string"), | ||
"subject": datasets.Value("string"), | ||
"subject_category": datasets.Value("string"), | ||
"year": datasets.Value("string"), | ||
} | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
"""Returns SplitGenerators.""" | ||
urls = _URLS[_DATASETNAME] | ||
lang = self.config.name.split("_")[1] | ||
|
||
data_dir = dl_manager.download(urls) | ||
|
||
if not os.path.exists(data_dir + "_extracted"): | ||
if not os.path.exists(data_dir + ".zip"): | ||
os.rename(data_dir, data_dir + ".zip") | ||
with zipfile.ZipFile(data_dir + ".zip", "r") as zip_ref: | ||
zip_ref.extractall(data_dir + "_extracted", pwd=_PASSWORD) # unzipping with password | ||
if not os.path.exists(data_dir): | ||
os.rename(data_dir + ".zip", data_dir) | ||
image_generator = [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={ | ||
"filepath": os.path.join(data_dir + "_extracted", "data/multimodal-question"), | ||
"split": "train", | ||
}, | ||
), | ||
] | ||
|
||
text_generator = [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={ | ||
"filepath": os.path.join(data_dir + "_extracted", f"data/text-question/{_LANG_MAPPER[lang]}-questions-test.json"), | ||
"split": "test", | ||
}, | ||
), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.VALIDATION, | ||
gen_kwargs={ | ||
"filepath": os.path.join(data_dir + "_extracted", f"data/text-question/{_LANG_MAPPER[lang]}-questions-dev.json"), | ||
"split": "dev", | ||
}, | ||
), | ||
] | ||
if "imqa" in self.config.name: | ||
return image_generator | ||
else: | ||
if "source" in self.config.name: | ||
image_generator.extend(text_generator) | ||
return image_generator | ||
else: | ||
return text_generator | ||
|
||
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: | ||
"""Yields examples as (key, example) tuples.""" | ||
lang = self.config.name.split("_")[1] | ||
if self.config.schema == "source": | ||
if split == "train": | ||
filepath_json = os.path.join(filepath, f"{_LANG_MAPPER[lang]}-questions-image.json") | ||
with open(filepath_json, "r") as file: | ||
data = json.load(file) | ||
idx = 0 | ||
for json_obj in data: | ||
image_paths = [] | ||
for text in [json_obj["question_text"]] + json_obj["options"] + json_obj["background_description"]: | ||
matches = re.findall(r"\[image-(\d+)\.(jpg|png)\]", text) | ||
if matches: | ||
image_path = [os.path.join(filepath, f"images-{_LANG_MAPPER[lang]}/image-{image_number[0]}.{image_number[1]}") for image_number in matches] | ||
image_paths.extend(image_path) | ||
example = { | ||
"question_text": json_obj["question_text"], | ||
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None, | ||
"answer_text": json_obj["answer_text"], | ||
"options": json_obj["options"], | ||
"language": json_obj["language"] if "language" in json_obj.keys() else None, | ||
"level": json_obj["level"] if "level" in json_obj.keys() else None, | ||
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None, | ||
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None, | ||
"year": json_obj["year"] if "year" in json_obj.keys() else None, | ||
"need_image": "yes", | ||
"image_paths": image_paths, | ||
} | ||
yield idx, example | ||
idx += 1 | ||
else: | ||
with open(filepath, "r") as file: | ||
data = json.load(file) | ||
idx = 0 | ||
for json_obj in data: | ||
example = { | ||
"question_text": json_obj["question_text"], | ||
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None, | ||
"answer_text": json_obj["answer_text"], | ||
"options": json_obj["options"], | ||
"language": json_obj["language"] if "language" in json_obj.keys() else None, | ||
"level": json_obj["level"] if "level" in json_obj.keys() else None, | ||
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None, | ||
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None, | ||
"year": json_obj["year"] if "year" in json_obj.keys() else None, | ||
"need_image": "no", | ||
"image_paths": None, | ||
} | ||
yield idx, example | ||
idx += 1 | ||
|
||
elif self.config.schema == "seacrowd_qa": | ||
with open(filepath, "r") as file: | ||
data = json.load(file) | ||
idx = 0 | ||
for json_obj in data: | ||
example = { | ||
"id": idx, | ||
"question_id": idx, | ||
"document_id": idx, | ||
"question": json_obj["question_text"], | ||
"type": "multiple_choice", | ||
"choices": [". ".join(answer.split(". ")[1:]) for answer in json_obj["options"]], | ||
"context": "", | ||
"answer": [". ".join(answer.split(". ")[1:]) for answer in json_obj["options"] if json_obj["answer_text"] == answer[0]], | ||
"meta": { | ||
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None, | ||
"level": json_obj["level"] if "level" in json_obj.keys() else None, | ||
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None, | ||
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None, | ||
"year": json_obj["year"] if "year" in json_obj.keys() else None, | ||
}, | ||
} | ||
yield idx, example | ||
idx += 1 | ||
|
||
elif self.config.schema == "seacrowd_imqa": | ||
filepath_json = os.path.join(filepath, f"{_LANG_MAPPER[lang]}-questions-image.json") | ||
with open(filepath_json, "r") as file: | ||
data = json.load(file) | ||
idx = 0 | ||
for json_obj in data: | ||
image_paths = [] | ||
for text in [json_obj["question_text"]] + json_obj["options"] + json_obj["background_description"]: | ||
matches = re.findall(r"\[image-(\d+)\.(jpg|png)\]", text) | ||
if matches: | ||
image_path = [os.path.join(filepath, f"images-{_LANG_MAPPER[lang]}/image-{image_number[0]}.{image_number[1]}") for image_number in matches] | ||
image_paths.extend(image_path) | ||
|
||
example = { | ||
"id": idx, | ||
"question_id": idx, | ||
"document_id": idx, | ||
"questions": [json_obj["question_text"]], | ||
"type": "multiple_choice", | ||
"choices": [". ".join(answer.split(". ")[1:]) for answer in json_obj["options"]], | ||
"context": "", | ||
"answer": [". ".join(answer.split(". ")[1:]) for answer in json_obj["options"] if json_obj["answer_text"] == answer[0]], | ||
"image_paths": image_paths, | ||
"meta": { | ||
"background_description": json_obj["background_description"] if "background_description" in json_obj.keys() else None, | ||
"level": json_obj["level"] if "level" in json_obj.keys() else None, | ||
"subject": json_obj["subject"] if "subject" in json_obj.keys() else None, | ||
"subject_category": json_obj["subject_category"] if "subject_category" in json_obj.keys() else None, | ||
"year": json_obj["year"] if "year" in json_obj.keys() else None, | ||
}, | ||
} | ||
yield idx, example | ||
idx += 1 |