Skip to content

idstcv/KDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KDA

PyTorch Implementation for Our SDM'22 Paper: "Improved Knowledge Distillation via Full Kernel Matrix Transfer"

Requirements

  • Python 3.8
  • PyTorch 1.6

Usage:

KDA on CIFAR-100

CUDA_VISIBLE_DEVICES=0 python main_kda.py --alpha 0.04 --teacher-model /path/to/teacher  /path/to/cifar100

Citation

If you use the package in your research, please cite our paper:

@inproceedings{qian2022kda,
  author    = {Qi Qian and
               Hao Li and
               Juhua Hu},
  title     = {Improved Knowledge Distillation via Full Kernel Matrix Transfer},
  booktitle = {SIAM International Conference on Data Mining, {SDM} 2022},
  year      = {2022}
}

About

PyTorch Implementation for KDA

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages