Skip to content
/ BT4ST Public

Code for ACL 2023 main conference paper "Back Translation for Speech-to-text Translation Without Transcripts".

Notifications You must be signed in to change notification settings

ictnlp/BT4ST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

96dbde2 · Oct 25, 2023

History

10 Commits
Sep 1, 2023
Sep 22, 2023
Sep 1, 2023
Sep 1, 2023
Oct 25, 2023

Repository files navigation

Back Translation for Speech-to-text Translation Without Transcripts

Qingkai Fang, Yang Feng* | Institute of Computing Technology, Chinese Academy of Sciences (ICT/CAS)

This is a PyTorch implementation of the ACL 2023 main conference paper Back Translation for Speech-to-text Translation Without Transcripts.

Environment Configuration

  1. Clone this repository:
git clone [email protected]:ictnlp/BT4ST.git
cd BT4ST/
  1. Install fairseq:
cd fairseq/
pip install --editable ./
python setup.py build develop
  1. We put our scripts related to this work in the bt4st/ directory. We also borrow the fairseq plug-ins from CRESS to support ST training. (You can also use your commonly used training framework, as the focus of our work is on synthesizing ST data.)

Getting Started

In the following, we will show how to synthesize pseudo ST data using the En-De direction as an example.

  1. Download MuST-C v1.0 dataset to the data/mustc/ directory and uncompress it. Run the following script to preprocess the dataset.
python bt4st/scripts/prep_mustc_data.py \
    --data-root bt4st/data/mustc/ \
    --vocab-type unigram \
    --vocab-size 8000 \
    --tgt-lang de
  1. Create manifest for quantization.
python bt4st/scripts/create_manifest.py \
    --data-root bt4st/data/mustc \
    --tgt-lang de \
    --output-root bt4st/data/bt/
  1. Quantize source speech with pretrained kmeans model. Please first download the acoustic model and kmeans model.
KM_MODEL_PATH=path/to/km.bin
CKPT_PATH=path/to/hubert_base_ls960.pt
python bt4st/scripts/quantize_with_kmeans.py \
    --feature_type hubert \
    --kmeans_model_path $KM_MODEL_PATH \
    --acoustic_model_path $CKPT_PATH \
    --layer 6 \
    --manifest_path bt4st/data/bt/en-de/${train,dev,tst-COMMON}.txt \
    --out_quantized_file_path bt4st/data/bt/en-de/${train,dev,tst-COMMON}.unit
  1. Merge consecutive same units and rename the split.
python bt4st/scripts/reduce.py \
    --input-file bt4st/data/bt/en-de/${train,dev,tst-COMMON}.unit
    --output-file bt4st/data/bt/en-de/${train,dev,tst-COMMON}.unit
  1. Make unit dictionary.
for x in $(seq 0 $((100 - 1))); do
  echo "$x 1"
done >> bt4st/data/bt/en-de/dict.km100.txt
  1. Extract target sentences.
python bt4st/scripts/extract_target_from_tsv.py \
    --data-root bt4st/data/mustc \
    --tgt-lang de \
    --output-root bt4st/data/bt/
  1. Learn character-level vocabulary and convert target text into characters.
python bt4st/scripts/convert_to_char.py \
    --data-dir bt4st/data/bt/en-de \
    --dest-dir bt4st/data/bt/en-de \
    --tgt-lang de --learn-vocab
  1. Process into fairseq binary format.
python fairseq/fairseq_cli/preprocess.py \
    --source-lang de --target-lang unit \
    --trainpref bt4st/data/bt/en-de/train \
    --validpref bt4st/data/bt/en-de/dev \
    --testpref bt4st/data/bt/en-de/tst-COMMON \
    --destdir bt4st/data/bt/en-de/binary_de_unit \
    --srcdict bt4st/data/bt/en-de/spm_char_de.txt \
    --tgtdict bt4st/data/bt/en-de/dict.km100.txt --workers=20

python fairseq/fairseq_cli/preprocess.py \
    --source-lang unit --target-lang de \
    --trainpref bt4st/data/bt/en-de/train \
    --validpref bt4st/data/bt/en-de/dev \
    --testpref bt4st/data/bt/en-de/tst-COMMON \
    --destdir bt4st/data/bt/en-de/binary_unit_de \
    --srcdict bt4st/data/bt/en-de/dict.km100.txt \
    --tgtdict bt4st/data/bt/en-de/spm_char_de.txt --workers=20
  1. Train target-to-unit and unit-to-target models with 4 GPUs.
CUDA_VISIBLE_DEVICES=0,1,2,3 python fairseq/fairseq_cli/train.py bt4st/data/bt/en-de/binary_de_unit \
    --task translation --fp16 \
    --arch transformer --encoder-layers 6 --decoder-layers 6 --dropout 0.3 \
    --share-decoder-input-output-embed \
    --encoder-attention-heads 4 --decoder-attention-heads 4 \
    --max-source-positions 2048 --max-target-positions 2048 \
    --optimizer adam --adam-betas '(0.9, 0.98)' \
    --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --log-format 'simple' --log-interval 100 --save-dir checkpoints/de_to_unit --save-interval-updates 1000 \
    --batch-size 50 --max-update 100000 --update-freq 2

CUDA_VISIBLE_DEVICES=0,1,2,3 python fairseq/fairseq_cli/train.py bt4st/data/bt/en-de/binary_unit_de \
    --task translation --fp16 \
    --arch transformer --encoder-layers 6 --decoder-layers 6 --dropout 0.3 \
    --share-decoder-input-output-embed \
    --encoder-attention-heads 4 --decoder-attention-heads 4 \
    --max-source-positions 2048 --max-target-positions 2048 \
    --optimizer adam --adam-betas '(0.9, 0.98)' \
    --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --log-format 'simple' --log-interval 100 --save-dir checkpoints/unit_to_de --save-interval-updates 1000 \
    --batch-size 50 --max-update 100000 --update-freq 2
  1. Average last 10 checkpoints.
NAME=checkpoints/{de_to_unit,unit_to_de}
python fairseq/scripts/average_checkpoints.py \
    --inputs checkpoints/$NAME \
    --num-update-checkpoints 10 \
    --output checkpoints/$NAME/avg_last_10_update.pt
  1. Download the monolingual target corpus to bt4st/data/bt/de/wmt.de. Since the monolingual corpus may be very large, we split the corpus into several shards and convert text into characters.
python bt4st/scripts/split_file.py \
    --input-file bt4st/data/bt/de/wmt.de \
    --num-chunks 4 \
    --tgt-lang de \
    --spm-model bt4st/data/bt/en-de/spm_char_de.model \
    --output-root bt4st/data/bt/de/
  1. Process monolingual corpus into fairseq binary format.
for SHARD in $(seq 0 3) ;
do
    python fairseq/fairseq_cli/preprocess.py \
        --only-source \
        --source-lang de --target-lang unit \
        --srcdict bt4st/data/bt/en-de/spm_char_de.txt \
        --testpref bt4st/data/bt/de/wmt.char.shard$SHARD \
        --destdir bt4st/data/bt/de/binary_wmt_char.shard$SHARD \
        --workers 20
    cp bt4st/data/bt/en-de/dict.km100.txt bt4st/data/bt/de/binary_wmt_char.shard$SHARD/dict.unit.txt
done
  1. Target-to-unit back translation.
SHARD={0,1,2,3}
CKPT_PATH=checkpoints/de_to_unit/avg_last_10_update.pt
RESULTS_PATH=bt4st/data/bt/unit

mkdir -p $RESULTS_PATH
python fairseq/fairseq_cli/generate.py \
    bt4st/data/bt/de/binary_wmt_char.shard$SHARD \
    --path $CKPT_PATH \
    --skip-invalid-size-inputs-valid-test \
    --max-source-positions 1024 --max-target-positions 2048 \
    --max-tokens 4096 \
    --beam 8 --remove-bpe --lenpen 1 --max-len-a 1 \
    --fp16 > $RESULTS_PATH/wmt.shard$SHARD.out
  1. Extract predicted units and preprocess them.
grep "^D\-" $RESULTS_PATH/wmt.shard$SHARD.out | \
    sed 's/^D-//ig' | sort -nk1 | cut -f3 \
    > $RESULTS_PATH/wmt.shard$SHARD.unit

grep "^D\-" $RESULTS_PATH/wmt.shard$SHARD.out | \
    sed 's/^D-//ig' | sort -nk1 | cut -f1 \
    > $RESULTS_PATH/wmt.shard$SHARD.id

python fairseq/fairseq_cli/preprocess.py \
    --only-source \
    --source-lang unit --target-lang de \
    --srcdict bt4st/data/bt/en-de/dict.km100.txt \
    --testpref $RESULTS_PATH/wmt.shard$SHARD \
    --destdir $RESULTS_PATH/binary_bt.shard$SHARD \
    --workers 20
cp bt4st/data/bt/en-de/spm_char_de.txt $RESULTS_PATH/binary_bt.shard$SHARD/dict.de.txt
  1. Translate the predicted units back into target texts for data selection.
CKPT_PATH=checkpoints/unit_to_de/avg_last_10_update.pt
python fairseq/fairseq_cli/generate.py \
    $RESULTS_PATH/binary_bt.shard$SHARD \
    --path $CKPT_PATH \
    --skip-invalid-size-inputs-valid-test \
    --max-source-positions 2048 --max-target-positions 1024 \
    --max-tokens 65536 \
    --beam 1 --remove-bpe --lenpen 1 --max-len-a 1 \
    --fp16 > $RESULTS_PATH/bt.shard$SHARD.out
  1. Extract speaker embedding for the source speech. Please download wav2mel.pt and dvector-step250000.pt from the official repository to the bt4st/data/bt/dvector/ directory.
python bt4st/scripts/extract_dvector.py \
    --input-tsv data/mustc/en-de/tgt_only/train.tsv \
    --wav2mel-path bt4st/data/bt/dvector/wav2mel.pt \
    --dvector-path bt4st/data/bt/dvector/dvector-step250000.pt \
    --dest-dir bt4st/data/bt/dvector/train/
  1. Random select speaker embedding for speech synthesis.
num_samples=$(wc -l $RESULTS_PATH/wmt.shard$SHARD.unit | cut -d' ' -f1)

python bt4st/scripts/random_choose_dvector.py \
    --input-file bt4st/data/bt/dvector/train/spkr_emb.npy \
    --output-cnt $num_samples \
    --output-path $RESULTS_PATH/dvector.shard$SHARD.seed$SEED.npy \
    --seed $SEED
  1. Generate waveform using the unit-to-speech model. Please download the checkpoint and config from this link.
VOCODER_CKPT=path/to/vocoder/g_00100000
VOCODER_CFG=path/to/vocoder/config.json

mkdir -p $RESULTS_PATH/wave.multi.shard$SHARD.seed$SEED
python bt4st/scripts/generate_waveform_from_code_dvec.py \
    --in-code-file $RESULTS_PATH/wmt.shard$SHARD.unit \
    --vocoder $VOCODER_CKPT --vocoder-cfg $VOCODER_CFG \
    --dvectors-path $RESULTS_PATH/dvector.shard$SHARD.seed$SEED.npy \
    --results-path $RESULTS_PATH/wave.shard$SHARD.seed$SEED --dur-prediction
  1. Create manifest for synthesized data.
mkdir -p bt4st/data/st
AUDIO_DIR=wave.shard$SHARD.seed$SEED
python bt4st/scripts/create_tsv.py \
    --audio-dir $RESULTS_PATH/wave.shard$SHARD.seed$SEED \
    --tgt-path bt4st/data/bt/de/wmt.shard$SHARD.de \
    --id-path $RESULTS_PATH/wmt.shard$SHARD.id \
    --output-path bt4st/data/st/train.$AUDIO_DIR.tsv --name $AUDIO_DIR
  1. Data selection based on BLEU scores (Please install sacrebleu==2.0.0).
grep "^D\-" $RESULTS_PATH/bt.shard$SHARD.out | \
    sed 's/^D-//ig' | sort -nk1 | cut -f3 \
    > $RESULTS_PATH/bt.shard$SHARD.de

python bt4st/scripts/calc_bleu.py \
    --tgt-path bt4st/data/bt/de/wmt.shard$SHARD.de \
    --re-trans-path $RESULTS_PATH/bt.shard$SHARD.de \
    --id-path $RESULTS_PATH/wmt.shard$SHARD.id \
    --output-path $RESULTS_PATH/bt.shard$SHARD.bleu \
    --spm-model bt4st/data/bt/en-de/spm_char_de.model

python bt4st/scripts/filter_by_bleu.py \
    --input-file bt4st/data/st/train.$AUDIO_DIR.tsv \
    --bleu-path $RESULTS_PATH/bt.shard$SHARD.bleu \
    --output-file bt4st/data/st/train.$AUDIO_DIR.top75.tsv \
    --retain-percent 0.75
  1. Merge manifests of several shards.
python bt4st/scripts/merge_tsv.py \
    --input-files {path/to/shard1.tsv,path/to/shard2.tsv,path/to/shard3.tsv,path/to/shard4.tsv} \
    --output-file bt4st/data/st/train.tsv
  1. Copy the config and vocabulary files.
MUSTC_DIR=bt4st/data/mustc/en-de/tgt_only/
DEST_DIR=bt4st/data/st/
cp $MUSTC_DIR/config.yaml $DEST_DIR/
cp $MUSTC_DIR/spm_unigram8000.* $DEST_DIR/
cp $MUSTC_DIR/dev.tsv $DEST_DIR/
  1. Pretrain the ST model with synthesized data.
python fairseq/fairseq_cli/train.py bt4st/data/st/ \
    --user-dir cress \
    --tgt-lang de \
    --config-yaml config.yaml --train-subset train --valid-subset dev \
    --save-dir checkpoints/en_de_pretrain --num-workers 4 --max-tokens 2000000 --batch-size 32 --max-tokens-text 4096 --max-update 300000 \
    --task speech_and_text_translation --criterion speech_and_text_translation --label-smoothing 0.1 \
    --arch hubert_transformer_postln --optimizer adam --adam-betas '(0.9, 0.98)' --lr 1e-4 --lr-scheduler inverse_sqrt --weight-decay 0.0001 \
    --no-progress-bar --log-format json --log-interval 100 \
    --ddp-backend=legacy_ddp \
    --warmup-updates 4000 --clip-norm 0.0 --seed 1 --update-freq 2 --save-interval-updates 5000 \
    --layernorm-embedding \
    --fp16 \
    --st-training \
    --hubert-model-path checkpoints/hubert_base_ls960.pt
  1. Finetune the ST model with real data.
python fairseq/scripts/average_checkpoints.py \
    --inputs checkpoints/en_de_pretrain \
    --num-update-checkpoints 10 \
    --output checkpoints/en_de_pretrain/avg_last_10_epoch.pt

python fairseq/fairseq_cli/train.py data/mustc/en-de/tgt_only \
    --user-dir cress \
    --tgt-lang de \
    --config-yaml config.yaml --train-subset train --valid-subset dev \
    --save-dir checkpoints/en_de_finetune --num-workers 4 --max-tokens 2000000 --batch-size 32 --max-tokens-text 4096 --max-update 100000 \
    --task speech_and_text_translation --criterion speech_and_text_translation --label-smoothing 0.1 \
    --arch hubert_transformer_postln --optimizer adam --adam-betas '(0.9, 0.98)' --lr 1e-4 --lr-scheduler inverse_sqrt --weight-decay 0.0001 \
    --no-progress-bar --log-format json --log-interval 100 \
    --ddp-backend=legacy_ddp \
    --warmup-updates 4000 --clip-norm 0.0 --seed 1 --update-freq 2 \
    --layernorm-embedding \
    --fp16 \
    --st-training \
    --patience 10 \
    --hubert-model-path checkpoints/hubert_base_ls960.pt \
    --finetune-from-model checkpoints/en_de_pretrain/avg_last_10_epoch.pt
  1. Evaluate the final model.
python fairseq/scripts/average_checkpoints.py \
    --inputs checkpoints/en_de_finetune \
    --num-epoch-checkpoints 10 \
    --output checkpoints/en_de_finetune/avg_last_10_epoch.pt

python fairseq/fairseq_cli/generate.py data/mustc/en-de/tgt_only \
    --user-dir cress \
    --config-yaml config.yaml --gen-subset tst-COMMON --task speech_to_text_modified \
    --path checkpoints/en_de_finetune/avg_last_10_epoch.pt \
    --max-source-positions 900000 \
    --max-tokens 2000000 --beam 8 --lenpen 1.2 --scoring sacrebleu

Citation

If this repository is useful for you, please cite as:

@inproceedings{fang-and-feng-2023-back,
	title = {Back Translation for Speech-to-text Translation Without Transcripts},
	author = {Fang, Qingkai and Feng, Yang},
	booktitle = {Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics},
	year = {2023},
}

About

Code for ACL 2023 main conference paper "Back Translation for Speech-to-text Translation Without Transcripts".

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published