MNESEDA: a prior-guided subgraph representation learning framework for predicting disease-related enhancers.
- python 3.7.15
- pytorch 1.12.1
- torch-geometric 2.2.0
- scikit-learn 1.0.2
- networkx 2.5.0
- numpy 1.21.6
- pandas 1.2.0
Please Contact us ([email protected]) to obtain the Data and Splits.
Dataset | #Enhncer | #Disease | #Associations |
---|---|---|---|
Disease | 792 | 167 | 1059 |
EnDisease | 413 | 127 | 478 |
CancerEnD | 8525 | 18 | 8541 |
python main.py --data-name ${data_name} --pos-neg-ratio '1_1' --save-results --epochs 200 --lr 0.0001 --embedDim ${embed_size}