Skip to content
/ MNESEDA Public

MNESEDA: a prior-guided subgraph representation learning framework for predicting disease-related enhancers

Notifications You must be signed in to change notification settings

hzjsxu/MNESEDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 

Repository files navigation

MNESEDA

MNESEDA: a prior-guided subgraph representation learning framework for predicting disease-related enhancers.

alt_text

Requirements:

  • python 3.7.15
  • pytorch 1.12.1
  • torch-geometric 2.2.0
  • scikit-learn 1.0.2
  • networkx 2.5.0
  • numpy 1.21.6
  • pandas 1.2.0

Datasets

Please Contact us ([email protected]) to obtain the Data and Splits.

Statistic of EDA Dataset

Dataset #Enhncer #Disease #Associations
Disease 792 167 1059
EnDisease 413 127 478
CancerEnD 8525 18 8541

Usages

python main.py --data-name ${data_name} --pos-neg-ratio '1_1' --save-results --epochs 200 --lr 0.0001 --embedDim ${embed_size}

Note: The processed data and code will be public once our webserver is built.

About

MNESEDA: a prior-guided subgraph representation learning framework for predicting disease-related enhancers

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published