Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Disable jitter noise during evaluation in SwitchTransformers #28077

Merged
merged 6 commits into from
Dec 18, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -187,7 +187,7 @@ def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[to
self.input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(self.dtype)

if self.jitter_noise > 0:
if self.training and self.jitter_noise > 0:
# Multiply the token inputs by the uniform distribution - adding some noise
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ class SwitchTransformersConfig(PretrainedConfig):
vocab_size (`int`, *optional*, defaults to 32128):
Vocabulary size of the SwitchTransformers model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`SwitchTransformersModel`].
d_model (`int`, *optional*, defaults to 512):
d_model (`int`, *optional*, defaults to 768):
Size of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Size of the key, query, value projections per attention head. `d_kv` has to be equal to `d_model //
Expand All @@ -50,21 +50,19 @@ class SwitchTransformersConfig(PretrainedConfig):
Transformer.
num_layers (`int`, *optional*, defaults to 12):
Number of dense hidden layers in the Transformer encoder layer.
num_sparse_encoder_layers (`int`, *optional*, defaults to 6):
num_sparse_encoder_layers (`int`, *optional*, defaults to 3):
Number of sparse (MoE) dense hidden layers in the Transformer encoder layer.
num_decoder_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
num_sparse_decoder_layers (`int`, *optional*, defaults to 12):
num_sparse_decoder_layers (`int`, *optional*, defaults to 3):
Number of sparse (MoE) dense hidden layers in the Transformer decoder layer.
num_heads (`int`, *optional*, defaults to 8):
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_experts (`int`, *optional*, defaults to 8):
Number of experts for each SwitchTransformer layer.
router_type (`str`, *optional*, defaults to `"tokens_masked"`):
Router type - choose between `"tokens_masked", `"tokens_scatter"` and `"experts_masked"`.
router_bias (`bool`, *optional*, defaults to `True`):
router_bias (`bool`, *optional*, defaults to `False`):
Whether to add a bias to the router.
router_jitter_noise (`float`, *optional*, defaults to 0.1):
router_jitter_noise (`float`, *optional*, defaults to 0.01):
Amount of noise to add to the router.
router_dtype (`str`, *optional*, default to `"float32"`):
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
Expand All @@ -83,10 +81,10 @@ class SwitchTransformersConfig(PretrainedConfig):
The z loss factor for the total loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
initializer_factor (`float`, *optional*, defaults to 1):
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
feed_forward_proj (`string`, *optional*, defaults to `"relu"`):
dense_act_fn (`string`, *optional*, defaults to `"relu"`):
Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. SwitchTransformersv1.1
uses the `"gated-gelu"` feed forward projection. Original SwitchTransformers uses `"relu"`.
add_router_probs (`bool`, *optional*, defaults to `False`):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -168,7 +168,7 @@ def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[to
self.input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(self.dtype)

if self.jitter_noise > 0:
if self.training and self.jitter_noise > 0:
# Multiply the token inputs by the uniform distribution - adding some noise
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)

Expand Down
Loading