Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

timm to pytorch conversion for vit model fix #26908

Merged
merged 5 commits into from
Nov 20, 2023
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 32 additions & 53 deletions src/transformers/models/vit/convert_vit_timm_to_pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,13 +60,13 @@ def create_rename_keys(config, base_model=False):
)

if base_model:
# layernorm + pooler
# layernorm
rename_keys.extend(
[
("norm.weight", "layernorm.weight"),
("norm.bias", "layernorm.bias"),
("pre_logits.fc.weight", "pooler.dense.weight"),
("pre_logits.fc.bias", "pooler.dense.bias"),
# ("pre_logits.fc.weight", "pooler.dense.weight"),
# ("pre_logits.fc.bias", "pooler.dense.bias"),
staghado marked this conversation as resolved.
Show resolved Hide resolved
]
)

Expand Down Expand Up @@ -140,60 +140,39 @@ def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
# define default ViT configuration
config = ViTConfig()
base_model = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
base_model = True
config.patch_size = int(vit_name[-12:-10])
config.image_size = int(vit_name[-9:-6])
else:
config.num_labels = 1000

# load original model from timm
timm_model = timm.create_model(vit_name, pretrained=True)
timm_model.eval()

# get patch size and image size from the patch embedding submodule
config.patch_size = timm_model.patch_embed.patch_size[0]
config.image_size = timm_model.patch_embed.img_size[0]

# retrieve architecture-specific parameters from the timm model
config.hidden_size = timm_model.embed_dim
config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features
config.num_hidden_layers = len(timm_model.blocks)
config.num_attention_heads = timm_model.blocks[0].attn.num_heads

# check whether the model has a classification head or not
if timm_model.num_classes != 0:
config.num_labels = timm_model.num_classes
staghado marked this conversation as resolved.
Show resolved Hide resolved
repo_id = "huggingface/label-files"
filename = "imagenet-1k-id2label.json"
# .__ceil__() avoids having to import math
filename = f"imagenet-{(config.num_labels / 1000).__ceil__()}k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
config.patch_size = int(vit_name[-6:-4])
config.image_size = int(vit_name[-3:])
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith("tiny"):
config.hidden_size = 192
config.intermediate_size = 768
config.num_hidden_layers = 12
config.num_attention_heads = 3
elif vit_name[9:].startswith("small"):
config.hidden_size = 384
config.intermediate_size = 1536
config.num_hidden_layers = 12
config.num_attention_heads = 6
else:
pass
else:
if vit_name[4:].startswith("small"):
config.hidden_size = 768
config.intermediate_size = 2304
config.num_hidden_layers = 8
config.num_attention_heads = 8
elif vit_name[4:].startswith("base"):
pass
elif vit_name[4:].startswith("large"):
config.hidden_size = 1024
config.intermediate_size = 4096
config.num_hidden_layers = 24
config.num_attention_heads = 16
elif vit_name[4:].startswith("huge"):
config.hidden_size = 1280
config.intermediate_size = 5120
config.num_hidden_layers = 32
config.num_attention_heads = 16

# load original model from timm
timm_model = timm.create_model(vit_name, pretrained=True)
timm_model.eval()
print(f"{vit_name} is going to be converted as a feature extractor only. This is not guaranteed to work.")
base_model = True

# load state_dict of original model, remove and rename some keys
# load state_dict of original model
state_dict = timm_model.state_dict()

# remove and rename some keys in the state dict
if base_model:
remove_classification_head_(state_dict)
rename_keys = create_rename_keys(config, base_model)
Expand All @@ -202,8 +181,8 @@ def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
read_in_q_k_v(state_dict, config, base_model)

# load HuggingFace model
if vit_name[-5:] == "in21k":
model = ViTModel(config).eval()
if base_model:
model = ViTModel(config, add_pooling_layer=False).eval()
else:
model = ViTForImageClassification(config).eval()
model.load_state_dict(state_dict)
Expand All @@ -219,8 +198,8 @@ def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):

if base_model:
timm_pooled_output = timm_model.forward_features(pixel_values)
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(timm_pooled_output, outputs.pooler_output, atol=1e-3)
assert timm_pooled_output.shape == outputs.last_hidden_state.shape
assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1)
staghado marked this conversation as resolved.
Show resolved Hide resolved
else:
timm_logits = timm_model(pixel_values)
assert timm_logits.shape == outputs.logits.shape
Expand Down
Loading