Skip to content

Commit

Permalink
Generate: update links on LLM tutorial doc (#30550)
Browse files Browse the repository at this point in the history
  • Loading branch information
gante authored and Ita Zaporozhets committed May 14, 2024
1 parent cd36bd4 commit fa98107
Showing 1 changed file with 11 additions and 8 deletions.
19 changes: 11 additions & 8 deletions docs/source/en/llm_tutorial.md
Original file line number Diff line number Diff line change
Expand Up @@ -247,10 +247,11 @@ While the autoregressive generation process is relatively straightforward, makin

### Advanced generate usage

1. [Guide](generation_strategies) on how to control different generation methods, how to set up the generation configuration file, and how to stream the output;
2. [Guide](chat_templating) on the prompt template for chat LLMs;
3. [Guide](tasks/prompting) on to get the most of prompt design;
4. API reference on [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], and [generate-related classes](internal/generation_utils). Most of the classes, including the logits processors, have usage examples!
1. Guide on how to [control different generation methods](generation_strategies), how to set up the generation configuration file, and how to stream the output;
2. [Accelerating text generation](llm_optims);
3. [Prompt templates for chat LLMs](chat_templating);
4. [Prompt design guide](tasks/prompting);
5. API reference on [`~generation.GenerationConfig`], [`~generation.GenerationMixin.generate`], and [generate-related classes](internal/generation_utils). Most of the classes, including the logits processors, have usage examples!

### LLM leaderboards

Expand All @@ -259,10 +260,12 @@ While the autoregressive generation process is relatively straightforward, makin

### Latency, throughput and memory utilization

1. [Guide](llm_tutorial_optimization) on how to optimize LLMs for speed and memory;
2. [Guide](main_classes/quantization) on quantization such as bitsandbytes and autogptq, which shows you how to drastically reduce your memory requirements.
1. Guide on how to [optimize LLMs for speed and memory](llm_tutorial_optimization);
2. Guide on [quantization](main_classes/quantization) such as bitsandbytes and autogptq, which shows you how to drastically reduce your memory requirements.

### Related libraries

1. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
2. [`optimum`](https://github.com/huggingface/optimum), an extension of 🤗 Transformers that optimizes for specific hardware devices.
1. [`optimum`](https://github.com/huggingface/optimum), an extension of 🤗 Transformers that optimizes for specific hardware devices.
2. [`outlines`](https://github.com/outlines-dev/outlines), a library where you can constrain text generation (e.g. to generate JSON files);
3. [`text-generation-inference`](https://github.com/huggingface/text-generation-inference), a production-ready server for LLMs;
4. [`text-generation-webui`](https://github.com/oobabooga/text-generation-webui), a UI for text generation;

0 comments on commit fa98107

Please sign in to comment.