Skip to content

Commit

Permalink
Add tests for XLMRoberta
Browse files Browse the repository at this point in the history
  • Loading branch information
DavidAfonsoValente committed Jan 30, 2024
1 parent 237c1a3 commit efcae38
Showing 1 changed file with 374 additions and 4 deletions.
378 changes: 374 additions & 4 deletions tests/models/xlm_roberta/test_modeling_xlm_roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,18 +12,40 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest

import pytest

import unittest
from transformers import XLMRobertaConfig, is_torch_available
from transformers.testing_utils import (
require_flash_attn,
require_sentencepiece,
require_tokenizers,
require_torch,
require_torch_accelerator,
slow,
torch_device,
)

from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
import torch

from transformers import XLMRobertaModel
from transformers import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
)


@require_sentencepiece
Expand Down Expand Up @@ -67,3 +89,351 @@ def test_xlm_roberta_large(self):
self.assertEqual(output.shape, expected_output_shape)
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1], expected_output_values_last_dim, atol=1e-3))


class XLMRobertaModelTester(object):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope

def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])

sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)

config = self.get_config()

return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

def get_config(self):
return XLMRobertaConfig(
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)

def create_and_check_xlm_roberta_model(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XLMRobertaModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

def create_and_check_xlm_roberta_for_masked_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = XLMRobertaForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

def create_and_check_xlm_roberta_for_causal_lm(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.is_decoder = True
model = XLMRobertaForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

def create_and_check_xlm_roberta_for_question_answering(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = XLMRobertaForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

def create_and_check_xlm_roberta_for_sequence_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XLMRobertaForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

def create_and_check_xlm_roberta_for_token_classification(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = XLMRobertaForTokenClassification(config=config)
model.to(torch_device)
model.eval()

result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

def create_and_check_xlm_roberta_for_multiple_choice(
self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = XLMRobertaForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))

def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict


class XLMRobertaModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
XLMRobertaModel,
XLMRobertaForMaskedLM,
XLMRobertaForCausalLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
)
if is_torch_available()
else None
)
pipeline_model_mapping = (
{
"feature-extraction": XLMRobertaModel,
"fill-mask": XLMRobertaForMaskedLM,
"question-answering": XLMRobertaForQuestionAnswering,
"text-classification": XLMRobertaForSequenceClassification,
"token-classification": XLMRobertaForTokenClassification,
"zero-shot": XLMRobertaForSequenceClassification,
}
if is_torch_available()
else {}
)

def setUp(self):
self.model_tester = XLMRobertaModelTester(self)
self.config_tester = ConfigTester(self, config_class=XLMRobertaConfig, dim=37)

def test_config(self):
self.config_tester.run_common_tests()

def test_XLMRoberta_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_XLMRoberta_model(*config_and_inputs)

def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_XLMRoberta_for_masked_lm(*config_and_inputs)

def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_XLMRoberta_for_question_answering(*config_and_inputs)

def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_XLMRoberta_for_sequence_classification(*config_and_inputs)

def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_XLMRoberta_for_token_classification(*config_and_inputs)

def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_XLMRoberta_for_multiple_choice(*config_and_inputs)

@slow
def test_model_from_pretrained(self):
for model_name in XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = XLMRobertaModel.from_pretrained(model_name)
self.assertIsNotNone(model)

# Because XLMRobertaForMultipleChoice requires inputs with different shapes we need to override this test.
@require_flash_attn
@require_torch_accelerator
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference(self):
import torch

for model_class in self.all_model_classes:
dummy_input = torch.LongTensor(
[
[1, 2, 3, 4],
[1, 2, 8, 9],
[1, 2, 11, 12],
[1, 2, 13, 14],
]
).to(torch_device)
dummy_attention_mask = torch.LongTensor(
[
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
]
).to(torch_device)

config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)

with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)

model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.bfloat16)
model.to(torch_device)

logits = model(dummy_input, output_hidden_states=True).hidden_states[-1]
logits_fa = model_fa(dummy_input, output_hidden_states=True).hidden_states[-1]

self.assertTrue(torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2))

output_fa = model_fa(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
logits_fa = output_fa.hidden_states[-1]

output = model(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
logits = output.hidden_states[-1]

self.assertTrue(torch.allclose(logits_fa[1:], logits[1:], atol=4e-2, rtol=4e-2))

# Because XLMRobertaForMultipleChoice requires inputs with different shapes we need to override this test.
@require_flash_attn
@require_torch_accelerator
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_padding_right(self):
import torch

for model_class in self.all_model_classes:
dummy_input = torch.LongTensor(
[
[1, 2, 3, 4],
[1, 2, 8, 9],
[1, 2, 11, 12],
[1, 2, 13, 14],
]
).to(torch_device)
dummy_attention_mask = torch.LongTensor(
[
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
[0, 1, 1, 1],
]
).to(torch_device)

config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)

with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_fa = model_class.from_pretrained(
tmpdirname, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
model_fa.to(torch_device)

model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.bfloat16,
)
model.to(torch_device)

logits = model(dummy_input, output_hidden_states=True).hidden_states[-1]
logits_fa = model_fa(dummy_input, output_hidden_states=True).hidden_states[-1]

self.assertTrue(torch.allclose(logits_fa, logits, atol=4e-2, rtol=4e-2))

output_fa = model_fa(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
logits_fa = output_fa.hidden_states[-1]

output = model(dummy_input, attention_mask=dummy_attention_mask, output_hidden_states=True)
logits = output.hidden_states[-1]

self.assertTrue(torch.allclose(logits_fa[:-1], logits[:-1], atol=4e-2, rtol=4e-2))

0 comments on commit efcae38

Please sign in to comment.