Skip to content

Commit

Permalink
Add WSD scheduler (#30231)
Browse files Browse the repository at this point in the history
* Added WSD scheduler.

* Added tests.

* Fixed errors.

* Fix formatting.

* CI fixes.
  • Loading branch information
visheratin authored and Ita Zaporozhets committed May 14, 2024
1 parent 70e1779 commit df6bf29
Show file tree
Hide file tree
Showing 6 changed files with 82 additions and 0 deletions.
2 changes: 2 additions & 0 deletions docs/source/en/main_classes/optimizer_schedules.md
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,8 @@ The `.optimization` module provides:

[[autodoc]] get_inverse_sqrt_schedule

[[autodoc]] get_wsd_schedule

### Warmup (TensorFlow)

[[autodoc]] WarmUp
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3911,6 +3911,7 @@
"get_linear_schedule_with_warmup",
"get_polynomial_decay_schedule_with_warmup",
"get_scheduler",
"get_wsd_schedule",
]
_import_structure["pytorch_utils"] = [
"Conv1D",
Expand Down Expand Up @@ -8414,6 +8415,7 @@
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
get_wsd_schedule,
)
from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer

Expand Down
68 changes: 68 additions & 0 deletions src/transformers/optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -387,6 +387,73 @@ def get_cosine_with_min_lr_schedule_with_warmup(
return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_wsd_scheduler_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_stable_steps: int,
num_decay_steps: int,
num_cycles: float,
min_lr_ratio: float,
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_warmup_steps + num_stable_steps:
return 1.0
if current_step < num_warmup_steps + num_stable_steps + num_decay_steps:
progress = float(current_step - num_warmup_steps - num_stable_steps) / float(max(1, num_decay_steps))
value = max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return (1.0 - min_lr_ratio) * value + min_lr_ratio
return min_lr_ratio


def get_wsd_schedule(
optimizer: Optimizer,
num_warmup_steps: int,
num_stable_steps: int,
num_decay_steps: int,
min_lr_ratio: float = 0,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that has three stages:
1. linear increase from 0 to initial lr.
2. constant lr (equal to initial lr).
3. decrease following the values of the cosine function between the initial lr set in the optimizer to
a fraction of initial lr.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_stable_steps (`int`):
The number of steps for the stable phase.
num_decay_steps (`int`):
The number of steps for the cosine annealing phase.
min_lr_ratio (`float`, *optional*, defaults to 0):
The minimum learning rate as a ratio of the initial learning rate.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_wsd_scheduler_lambda,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
num_decay_steps=num_decay_steps,
min_lr_ratio=min_lr_ratio,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)


TYPE_TO_SCHEDULER_FUNCTION = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
Expand All @@ -397,6 +464,7 @@ def get_cosine_with_min_lr_schedule_with_warmup(
SchedulerType.INVERSE_SQRT: get_inverse_sqrt_schedule,
SchedulerType.REDUCE_ON_PLATEAU: get_reduce_on_plateau_schedule,
SchedulerType.COSINE_WITH_MIN_LR: get_cosine_with_min_lr_schedule_with_warmup,
SchedulerType.WARMUP_STABLE_DECAY: get_wsd_schedule,
}


Expand Down
1 change: 1 addition & 0 deletions src/transformers/trainer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -412,6 +412,7 @@ class SchedulerType(ExplicitEnum):
INVERSE_SQRT = "inverse_sqrt"
REDUCE_ON_PLATEAU = "reduce_lr_on_plateau"
COSINE_WITH_MIN_LR = "cosine_with_min_lr"
WARMUP_STABLE_DECAY = "warmup_stable_decay"


class TrainerMemoryTracker:
Expand Down
4 changes: 4 additions & 0 deletions src/transformers/utils/dummy_pt_objects.py
Original file line number Diff line number Diff line change
Expand Up @@ -10023,6 +10023,10 @@ def get_scheduler(*args, **kwargs):
requires_backends(get_scheduler, ["torch"])


def get_wsd_schedule(*args, **kwargs):
requires_backends(get_wsd_schedule, ["torch"])


class Conv1D(metaclass=DummyObject):
_backends = ["torch"]

Expand Down
5 changes: 5 additions & 0 deletions tests/optimization/test_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_wsd_schedule,
)


Expand Down Expand Up @@ -150,6 +151,10 @@ def test_schedulers(self):
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
get_wsd_schedule: (
{"num_warmup_steps": 2, "num_stable_steps": 2, "num_decay_steps": 3, "min_lr_ratio": 0.1},
[0.0, 5.0, 10.0, 10.0, 10.0, 7.75, 3.25, 1.0, 1.0, 1.0],
),
}

for scheduler_func, data in scheds.items():
Expand Down

0 comments on commit df6bf29

Please sign in to comment.