Skip to content

Commit

Permalink
Revert "Fix _init_weights for ResNetPreTrainedModel" (#31868)
Browse files Browse the repository at this point in the history
Revert "Fix `_init_weights` for `ResNetPreTrainedModel` (#31851)"

This reverts commit 4c8149d.
  • Loading branch information
ydshieh authored Jul 9, 2024
1 parent c5bc2d5 commit b45dd5d
Show file tree
Hide file tree
Showing 4 changed files with 10 additions and 86 deletions.
8 changes: 0 additions & 8 deletions src/transformers/models/regnet/modeling_regnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# limitations under the License.
"""PyTorch RegNet model."""

import math
from typing import Optional

import torch
Expand Down Expand Up @@ -285,13 +284,6 @@ class RegNetPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Expand Down
8 changes: 0 additions & 8 deletions src/transformers/models/resnet/modeling_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# limitations under the License.
"""PyTorch ResNet model."""

import math
from typing import Optional

import torch
Expand Down Expand Up @@ -275,13 +274,6 @@ class ResNetPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Expand Down
8 changes: 0 additions & 8 deletions src/transformers/models/rt_detr/modeling_rt_detr_resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@
See https://github.com/lyuwenyu/RT-DETR/blob/5b628eaa0a2fc25bdafec7e6148d5296b144af85/rtdetr_pytorch/src/nn/backbone/presnet.py#L126 for details.
"""

import math
from typing import Optional

from torch import Tensor, nn
Expand Down Expand Up @@ -324,13 +323,6 @@ class RTDetrResNetPreTrainedModel(PreTrainedModel):
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
# copied from the `reset_parameters` method of `class Linear(Module)` in `torch`.
elif isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight, a=math.sqrt(5))
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(module.bias, -bound, bound)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
Expand Down
72 changes: 10 additions & 62 deletions tests/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -3167,85 +3167,33 @@ def test_mismatched_shapes_have_properly_initialized_weights(self):
configs_no_init = _config_zero_init(config)

for model_class in self.all_model_classes:
mappings = [
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
]
is_classication_model = any(model_class.__name__ in get_values(mapping) for mapping in mappings)

if not is_classication_model:
if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
continue

# TODO: ydshieh
is_special_classes = model_class.__name__ in [
"wav2vec2.masked_spec_embed",
"Wav2Vec2ForSequenceClassification",
"CLIPForImageClassification",
"RegNetForImageClassification",
"ResNetForImageClassification",
]
special_param_names = [
r"wav2vec2\.masked_spec_embed",
r"wav2vec2\.feature_extractor\.conv_layers\..+\.conv\.weight",
r"wav2vec2\.feature_projection\.projection\.weight",
r"wav2vec2\.feature_projection\.projection\.bias",
r"wav2vec2\.encoder\.pos_conv_embed\.conv\.parametrizations\.weight\.original.",
r"classifier\.weight",
r"regnet\.embedder\.embedder\.convolution\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.convolution\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.shortcut\.convolution\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.weight",
r"regnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.bias",
r"classifier\..+\.weight",
r"classifier\..+\.bias",
r"resnet\.embedder\.embedder\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.shortcut\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.shortcut\.convolution\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.weight",
r"resnet\.encoder\.stages\..+\.layers\..+\.layer\..+\.attention\..+\.bias",
]

with self.subTest(msg=f"Testing {model_class}"):
with tempfile.TemporaryDirectory() as tmp_dir:
model = model_class(configs_no_init)
model.save_pretrained(tmp_dir)

# Fails when we don't set ignore_mismatched_sizes=True
with self.assertRaises(RuntimeError):
new_model = model_class.from_pretrained(tmp_dir, num_labels=42)
new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)

logger = logging.get_logger("transformers.modeling_utils")

with CaptureLogger(logger) as cl:
new_model = model_class.from_pretrained(tmp_dir, num_labels=42, ignore_mismatched_sizes=True)
new_model = AutoModelForSequenceClassification.from_pretrained(
tmp_dir, num_labels=42, ignore_mismatched_sizes=True
)
self.assertIn("the shapes did not match", cl.out)

for name, param in new_model.named_parameters():
if param.requires_grad:
param_mean = ((param.data.mean() * 1e9).round() / 1e9).item()
if not (
is_special_classes
and any(len(re.findall(target, name)) > 0 for target in special_param_names)
):
self.assertIn(
param_mean,
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertGreaterEqual(
param_mean,
-1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertLessEqual(
param_mean,
1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)

def test_matched_shapes_have_loaded_weights_when_some_mismatched_shapes_exist(self):
# 1. Create a dummy class. Should have buffers as well? To make sure we test __init__
Expand Down

0 comments on commit b45dd5d

Please sign in to comment.