Skip to content

Commit

Permalink
[i18n-ZH] Translated fast_tokenizers.md to Chinese (#26910)
Browse files Browse the repository at this point in the history
docs: translate fast_tokenizers into Chinese
  • Loading branch information
yyLeaves authored Oct 18, 2023
1 parent eec5a3a commit 732d2a8
Show file tree
Hide file tree
Showing 2 changed files with 72 additions and 1 deletion.
6 changes: 5 additions & 1 deletion docs/source/zh/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,4 +9,8 @@
- sections:
- local: accelerate
title: 加速分布式训练
title: 教程
title: 教程
- sections:
- local: fast_tokenizers
title: 使用 🤗 Tokenizers 中的分词器
title: 开发者指南
67 changes: 67 additions & 0 deletions docs/source/zh/fast_tokenizers.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->

# 使用 🤗 Tokenizers 中的分词器

[`PreTrainedTokenizerFast`] 依赖于 [🤗 Tokenizers](https://huggingface.co/docs/tokenizers) 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。

在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器:

```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace

>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])

>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```

现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。

## 直接从分词器对象加载

让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。[`PreTrainedTokenizerFast`] 类允许通过接受已实例化的 *tokenizer* 对象作为参数,进行轻松实例化:

```python
>>> from transformers import PreTrainedTokenizerFast

>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```

现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。

## 从 JSON 文件加载

为了从 JSON 文件中加载分词器,让我们先保存我们的分词器:

```python
>>> tokenizer.save("tokenizer.json")
```

我们保存此文件的路径可以通过 `tokenizer_file` 参数传递给 [`PreTrainedTokenizerFast`] 初始化方法:

```python
>>> from transformers import PreTrainedTokenizerFast

>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```

现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往[分词器页面](main_classes/tokenizer)了解更多信息。

0 comments on commit 732d2a8

Please sign in to comment.