-
Notifications
You must be signed in to change notification settings - Fork 27.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added test cases for rembert refering to albert and reformer test_tok… (
#27637) * Added test cases for rembert refering to albert and reformer test_tokenization * removed CURL_CA_BUNDLE=' * Added flag test_sentencepiece_ignore_case and space_between_special_tokens to True * Overrided test_added_tokens_serialization * As slow->fast token failed due to the different initialization for [MASK] for slow and fast, Therefore it required to make the initialization for [MASK] token uniform between fast and slow token * Added few more test cases in test_encode_decode_round_trip and modefied the slow token (mask_token) to have AddedToken instance with lstrip=True * Added few test cases in test_encoder_decoder round trip and also modified slow tokenizer of rembert to have mask_token as AddedToken with lstrip = True * Cleaned the code and added fmt: skip to avoid line breaks after make style + added comments to indicate from the copied test cases * Corrected few comments * Fixed quality issue * Ran fix-copies * Fixed few minor issues as (make fix-copies) broke few test cases while stripping the text * Reverted the changes made by repo-consistancy --------- Co-authored-by: Kokane <[email protected]>
- Loading branch information
1 parent
a0f7c4a
commit 4d4febb
Showing
2 changed files
with
247 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
# coding=utf-8 | ||
# Copyright 2022 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Testing suite for the RemBert tokenizer. """ | ||
|
||
|
||
import tempfile | ||
import unittest | ||
|
||
from tests.test_tokenization_common import AddedToken, TokenizerTesterMixin | ||
from transformers import RemBertTokenizer, RemBertTokenizerFast | ||
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers | ||
|
||
|
||
SENTENCEPIECE_UNDERLINE = "▁" | ||
SPIECE_UNDERLINE = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility | ||
|
||
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model") | ||
|
||
|
||
@require_sentencepiece | ||
@require_tokenizers | ||
class RemBertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | ||
tokenizer_class = RemBertTokenizer | ||
rust_tokenizer_class = RemBertTokenizerFast | ||
space_between_special_tokens = True | ||
test_rust_tokenizer = True | ||
test_sentencepiece_ignore_case = True | ||
pre_trained_model_path = "google/rembert" | ||
|
||
def setUp(self): | ||
super().setUp() | ||
|
||
tokenizer = RemBertTokenizer(SAMPLE_VOCAB) | ||
tokenizer.save_pretrained(self.tmpdirname) | ||
|
||
# Copied from ReformerTokenizationTest.get_input_output_texts | ||
def get_input_output_texts(self, tokenizer): | ||
input_text = "this is a test" | ||
output_text = "this is a test" | ||
return input_text, output_text | ||
|
||
def test_get_vocab(self): | ||
vocab_keys = list(self.get_tokenizer().get_vocab().keys()) | ||
self.assertEqual(vocab_keys[0], "<unk>") | ||
self.assertEqual(vocab_keys[1], "<s>") | ||
|
||
self.assertEqual(vocab_keys[5], "▁the") | ||
self.assertEqual(vocab_keys[2], "</s>") | ||
|
||
def test_vocab_size(self): | ||
self.assertEqual(self.get_tokenizer().vocab_size, 1_000) | ||
|
||
def test_full_tokenizer(self): | ||
tokenizer = RemBertTokenizer(SAMPLE_VOCAB, keep_accents=True) | ||
|
||
tokens = tokenizer.tokenize("This is a test") | ||
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) | ||
|
||
self.assertListEqual( | ||
tokenizer.convert_tokens_to_ids(tokens), | ||
[285, 46, 10, 170, 382], | ||
) | ||
|
||
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") | ||
self.assertListEqual( tokens, [SPIECE_UNDERLINE + "I",SPIECE_UNDERLINE + "was",SPIECE_UNDERLINE + "b","or","n",SPIECE_UNDERLINE + "in",SPIECE_UNDERLINE + "","9","2","0","0","0",",",SPIECE_UNDERLINE + "and",SPIECE_UNDERLINE + "this",SPIECE_UNDERLINE + "is",SPIECE_UNDERLINE + "f","al","s","é",".",],) # fmt: skip | ||
ids = tokenizer.convert_tokens_to_ids(tokens) | ||
self.assertListEqual(ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) | ||
|
||
def test_encode_decode_round_trip(self): | ||
tokenizer = RemBertTokenizer(SAMPLE_VOCAB, keep_accents=True) | ||
|
||
text = "清水寺は京都にある。" | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual(tokens, ["▁", "清水寺は京都にある。"]) | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual(encoded_string, [1000, 7, 0, 1001]) | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEquals(decode_text, text) | ||
|
||
text = "That's awesome! 🤩 #HuggingFace, 🌟 Have a great day! 🌈" | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual( tokens, ['▁That', "'", 's', '▁a', 'w', 'es', 'ome', '!', '▁', '🤩', '▁', '#', 'H', 'u', 'g', 'g', 'ing', 'F', 'a', 'ce', ',', '▁', '🌟', '▁H', 'a', 've', '▁a', '▁great', '▁day', '!', '▁', '🌈']) # fmt: skip | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEquals(decode_text, "That's awesome! 🤩 #HuggingFace, 🌟 Have a great day! 🌈") | ||
|
||
text = "In the sky up above" | ||
tokens = tokenizer._tokenize(text) | ||
self.assertListEqual(tokens, ["▁In", "▁the", "▁s", "k", "y", "▁up", "▁a", "b", "o", "ve"]) # fmt: skip | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual(encoded_string, [1000, 388, 5, 47, 45, 30, 118, 10, 65, 20, 123, 1001]) | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEqual(text, decode_text) | ||
|
||
text = "The cat. . Sat <s>.In a room" | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual( | ||
tokens, ["▁The", "▁c", "at", ".", "▁", ".", "▁S", "at", "▁", "<", "s", ">", ".", "I", "n", "▁a", "▁room"] | ||
) | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual( | ||
encoded_string, [1000, 68, 69, 76, 4, 7, 4, 166, 76, 7, 0, 6, 0, 4, 100, 24, 10, 136, 1001] | ||
) | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEqual(text, decode_text) | ||
|
||
text = "Invoice #12345, dated 2023-12-01, is due on 2024-01-15." | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual(tokens, ['▁In', 'v', 'o', 'ic', 'e', '▁', '#', '1', '2', '34', '5', ',', '▁da', 'ted', '▁', '2', '0', '2', '3', '-', '1', '2', '-', '0', '1', ',', '▁is', '▁d', 'u', 'e', '▁on', '▁', '2', '0', '2', '4', '-', '0', '1', '-', '1', '5', '.']) # fmt: skip | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual(encoded_string, [1000, 388, 83, 20, 113, 15, 7, 0, 356, 602, 0, 555, 3, 417, 273, 7, 602, 347, 602, 0, 33, 356, 602, 33, 347, 356, 3, 46, 229, 51, 15, 59, 7, 602, 347, 602, 0, 33, 347, 356, 33, 356, 555, 4, 1001]) # fmt: skip | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEqual(text, decode_text) | ||
|
||
text = "Lorem ipsum dolor sit amet, consectetur adipiscing elit..." | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual(tokens, ['▁', 'L', 'or', 'em', '▁', 'i', 'p', 's', 'um', '▁do', 'l', 'or', '▁sit', '▁am', 'e', 't', ',', '▁con', 'se', 'c', 'te', 't', 'ur', '▁a', 'd', 'i', 'p', 'is', 'c', 'ing', '▁', 'el', 'it', '.', '.', '.']) # fmt: skip | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual( encoded_string, [1000, 7, 279, 55, 300, 7, 23, 29, 6, 155, 92, 27, 55, 615, 219, 15, 14, 3, 247, 114, 28, 181, 14, 108, 10, 16, 23, 29, 125, 28, 17, 7, 168, 137, 4, 4, 4, 1001] ) # fmt: skip | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEqual(text, decode_text) | ||
|
||
# for multiple language in one sentence | ||
text = "Bonjour! Hello! こんにちは!" | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual(tokens, ["▁B", "on", "j", "o", "ur", "!", "▁He", "ll", "o", "!", "▁", "こんにちは", "!"]) | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual(encoded_string, [1000, 295, 109, 999, 20, 108, 146, 156, 86, 20, 146, 7, 0, 146, 1001]) | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEqual(text, decode_text) | ||
|
||
text = "Extra spaces\tand\nline breaks\r\nshould be handled." | ||
tokens = tokenizer.tokenize(text) | ||
self.assertListEqual(tokens, ['▁E', 'x', 't', 'r', 'a', '▁sp', 'a', 'ce', 's', '▁and', '▁line', '▁b', 're', 'a', 'k', 's', '▁should', '▁be', '▁hand', 'led', '.']) # fmt: skip | ||
encoded_string = tokenizer.encode(text) | ||
self.assertListEqual( | ||
encoded_string, | ||
[1000, 454, 297, 14, 35, 18, 277, 18, 133, 6, 12, 485, 84, 56, 18, 45, 6, 173, 36, 363, 338, 4, 1001], | ||
) | ||
decode_text = tokenizer.convert_tokens_to_string(tokens) | ||
self.assertEqual("Extra spaces and line breaks should be handled.", decode_text) | ||
|
||
def test_sequence_builders(self): | ||
tokenizer = RemBertTokenizer(SAMPLE_VOCAB) | ||
|
||
text = tokenizer.encode("sequence builders") | ||
text_2 = tokenizer.encode("multi-sequence build") | ||
|
||
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text) | ||
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) | ||
|
||
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] | ||
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_2 + [ | ||
tokenizer.sep_token_id | ||
] | ||
|
||
def test_added_tokens_serialization(self): | ||
# Utility to test the added vocab | ||
def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir): | ||
tokenizer = tokenizer_class.from_pretrained(temp_dir) | ||
self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens) | ||
self.assertIn(new_eos, tokenizer.added_tokens_decoder.values()) | ||
self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos) | ||
self.assertDictEqual(expected, tokenizer.added_tokens_decoder) | ||
return tokenizer | ||
|
||
new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False, special=True) | ||
new_masked_token = AddedToken("[MASK]", lstrip=True, rstrip=False, normalized=False) | ||
for tokenizer, pretrained_name, kwargs in self.tokenizers_list: | ||
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): | ||
# Load a slow tokenizer from the hub, init with the new token for fast to also include it | ||
tokenizer = self.tokenizer_class.from_pretrained( | ||
pretrained_name, eos_token=new_eos, mask_token=new_masked_token | ||
) | ||
EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder | ||
with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"): | ||
self.assertEqual(tokenizer._eos_token, new_eos) | ||
self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values())) | ||
|
||
with tempfile.TemporaryDirectory() as tmp_dir_2: | ||
tokenizer.save_pretrained(tmp_dir_2) | ||
with self.subTest( | ||
"Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class" | ||
): | ||
_test_added_vocab_and_eos( | ||
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2 | ||
) | ||
|
||
if self.rust_tokenizer_class is not None: | ||
with self.subTest( | ||
"Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class" | ||
): | ||
tokenizer_fast = _test_added_vocab_and_eos( | ||
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2 | ||
) | ||
with tempfile.TemporaryDirectory() as tmp_dir_3: | ||
tokenizer_fast.save_pretrained(tmp_dir_3) | ||
with self.subTest( | ||
"Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class" | ||
): | ||
_test_added_vocab_and_eos( | ||
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 | ||
) | ||
|
||
with self.subTest( | ||
"Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class" | ||
): | ||
_test_added_vocab_and_eos( | ||
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3 | ||
) | ||
|
||
with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"): | ||
if self.rust_tokenizer_class is not None: | ||
tokenizer_fast = self.rust_tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos) | ||
self.assertEqual(tokenizer_fast._eos_token, new_eos) | ||
self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values())) | ||
# We can't test the following because for BC we kept the default rstrip lstrip in slow not fast. Will comment once normalization is alright | ||
with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"): | ||
self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder) | ||
|
||
EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder | ||
with tempfile.TemporaryDirectory() as tmp_dir_4: | ||
tokenizer_fast.save_pretrained(tmp_dir_4) | ||
with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"): | ||
_test_added_vocab_and_eos( | ||
EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4 | ||
) | ||
|
||
with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"): | ||
_test_added_vocab_and_eos( | ||
EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4 | ||
) |