Skip to content

Commit

Permalink
Fix quality Olmo + SDPA (#30302)
Browse files Browse the repository at this point in the history
fix olmo
  • Loading branch information
fxmarty authored and ArthurZucker committed Apr 22, 2024
1 parent a82c189 commit 34801a4
Showing 1 changed file with 25 additions and 9 deletions.
34 changes: 25 additions & 9 deletions src/transformers/models/olmo/modeling_olmo.py
Original file line number Diff line number Diff line change
Expand Up @@ -653,6 +653,7 @@ def forward(
value_states,
attn_mask=causal_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=causal_mask is None and q_len > 1,
)

attn_output = attn_output.transpose(1, 2).contiguous()
Expand Down Expand Up @@ -970,9 +971,7 @@ def forward(
if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_seen_tokens + inputs_embeds.shape[1]
)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_seen_tokens)

# embed positions
hidden_states = inputs_embeds
Expand Down Expand Up @@ -1036,25 +1035,42 @@ def forward(
attentions=all_self_attns,
)

# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(self, attention_mask, input_tensor, cache_position, current_length):
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_seen_tokens: int,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114

if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None

if self.config._attn_implementation == "sdpa":
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument,
# in order to dispatch on Flash Attention 2.
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens
):
return None

dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if hasattr(getattr(self.layers[0], "self_attn", {}), "past_key_value"): # static cache
target_length = self.config.max_position_embeddings
else: # dynamic cache
target_length = (
attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else current_length + 1
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)

causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
Expand Down

0 comments on commit 34801a4

Please sign in to comment.