Skip to content

Commit

Permalink
add modules_in_block_to_quantize arg in GPTQconfig (#27956)
Browse files Browse the repository at this point in the history
* add inside_layer_modules arg

* fix

* change to modules_to_quantize_inside_block

* fix

* remane again

* Apply suggestions from code review

Co-authored-by: Arthur <[email protected]>

* better docsting

* fix again with less explanation

* Update src/transformers/utils/quantization_config.py

Co-authored-by: amyeroberts <[email protected]>

* style

---------

Co-authored-by: Arthur <[email protected]>
Co-authored-by: amyeroberts <[email protected]>
  • Loading branch information
3 people authored Dec 13, 2023
1 parent fe44b1f commit 17506d1
Showing 1 changed file with 17 additions and 2 deletions.
19 changes: 17 additions & 2 deletions src/transformers/utils/quantization_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -363,7 +363,7 @@ class GPTQConfig(QuantizationConfigMixin):
model_seqlen (`int`, *optional*):
The maximum sequence length that the model can take.
block_name_to_quantize (`str`, *optional*):
The transformers block name to quantize.
The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers)
module_name_preceding_first_block (`List[str]`, *optional*):
The layers that are preceding the first Transformer block.
batch_size (`int`, *optional*, defaults to 1):
Expand All @@ -379,7 +379,14 @@ class GPTQConfig(QuantizationConfigMixin):
The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults
to `{"version": 1}` if unset.
cache_block_outputs (`bool`, *optional*, defaults to `True`):
Whether to cache block outputs to reuse as inputs for the succeeding block.
Whether to cache block outputs to reuse as inputs for the succeeding block.
modules_in_block_to_quantize (`List[List[str]]`, *optional*):
List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized.
The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers.
Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`.
In this example, we will first quantize the q,k,v layers simultaneously since they are independent.
Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get
better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized.
"""

def __init__(
Expand All @@ -402,6 +409,7 @@ def __init__(
max_input_length: Optional[int] = None,
exllama_config: Optional[Dict[str, Any]] = None,
cache_block_outputs: bool = True,
modules_in_block_to_quantize: Optional[List[List[str]]] = None,
**kwargs,
):
self.quant_method = QuantizationMethod.GPTQ
Expand All @@ -424,6 +432,7 @@ def __init__(
self.exllama_config = exllama_config
self.disable_exllama = kwargs.pop("disable_exllama", None)
self.cache_block_outputs = cache_block_outputs
self.modules_in_block_to_quantize = modules_in_block_to_quantize
self.post_init()

def get_loading_attributes(self):
Expand Down Expand Up @@ -494,6 +503,12 @@ def post_init(self):
raise ValueError(
f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}"
)
if self.modules_in_block_to_quantize is not None:
optimum_version = version.parse(importlib.metadata.version("optimum"))
if optimum_version < version.parse("1.15.0"):
raise ValueError(
"You current version of `optimum` does not support `modules_in_block_to_quantize` quantization argument, please upgrade `optimum` package to a version superior than 1.15.0 ."
)

def to_dict(self):
config_dict = super().to_dict()
Expand Down

0 comments on commit 17506d1

Please sign in to comment.