Skip to content

Commit

Permalink
server: use chunked inputs
Browse files Browse the repository at this point in the history
The router will now send the input as chunks besides as a single
string. This change modifies the server to process chunked input
rather than strings. This also allows us to remove the image
extraction code from the server.
  • Loading branch information
danieldk committed Jun 6, 2024
1 parent 4594e6f commit 3181443
Show file tree
Hide file tree
Showing 13 changed files with 94 additions and 88 deletions.
1 change: 1 addition & 0 deletions server/tests/models/test_bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
return generate_pb2.Request(
id=0,
inputs="Test",
input_chunks=generate_pb2.Input(chunks=[generate_pb2.InputChunk(text="Test")]),
prefill_logprobs=True,
truncate=100,
parameters=default_pb_parameters,
Expand Down
1 change: 1 addition & 0 deletions server/tests/models/test_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
return generate_pb2.Request(
id=0,
inputs="Test",
input_chunks=generate_pb2.Input(chunks=[generate_pb2.InputChunk(text="Test")]),
prefill_logprobs=True,
truncate=100,
parameters=default_pb_parameters,
Expand Down
8 changes: 8 additions & 0 deletions server/tests/models/test_santacoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
return generate_pb2.Request(
id=0,
inputs="def",
input_chunks=generate_pb2.Input(chunks=[generate_pb2.InputChunk(text="def")]),
prefill_logprobs=True,
truncate=100,
parameters=default_pb_parameters,
Expand All @@ -32,6 +33,13 @@ def default_fim_pb_request(default_pb_parameters, default_pb_stop_parameters):
return generate_pb2.Request(
id=0,
inputs="<fim-prefix>def<fim-suffix>world<fim-middle>",
input_chunks=generate_pb2.Input(
chunks=[
generate_pb2.InputChunk(
text="<fim-prefix>def<fim-suffix>world<fim-middle>"
)
]
),
prefill_logprobs=True,
truncate=100,
parameters=default_pb_parameters,
Expand Down
1 change: 1 addition & 0 deletions server/tests/models/test_seq2seq_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ def default_pb_request(default_pb_parameters, default_pb_stop_parameters):
return generate_pb2.Request(
id=0,
inputs="Test",
input_chunks=generate_pb2.Input(chunks=[generate_pb2.InputChunk(text="Test")]),
prefill_logprobs=True,
truncate=100,
parameters=default_pb_parameters,
Expand Down
4 changes: 3 additions & 1 deletion server/text_generation_server/models/causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from typing import Optional, Tuple, List, Type, Dict

from text_generation_server.models import Model
from text_generation_server.utils.chunks import concat_text_chunks
from text_generation_server.utils.tokens import batch_top_tokens
from text_generation_server.models.types import (
Batch,
Expand Down Expand Up @@ -86,7 +87,8 @@ def from_pb(
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
inputs.append(concat_text_chunks(r.input_chunks.chunks))

next_token_choosers.append(
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
)
Expand Down
9 changes: 6 additions & 3 deletions server/text_generation_server/models/flash_causal_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,10 @@
from dataclasses import dataclass
from opentelemetry import trace
from transformers import PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type, Dict
from typing import Iterable, Optional, Tuple, List, Type, Dict

from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from text_generation_server.utils.chunks import concat_text_chunks
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models import Model
from text_generation_server.utils.tokens import batch_top_tokens
Expand Down Expand Up @@ -127,11 +128,13 @@ def to_pb(self) -> generate_pb2.CachedBatch:
)

@classmethod
def batch_tokenized_inputs(cls, requests, tokenizer):
def batch_tokenized_inputs(
cls, requests: Iterable[generate_pb2.Request], tokenizer
):
batch_inputs = []
max_truncation = 0
for r in requests:
batch_inputs.append(r.inputs)
batch_inputs.append(concat_text_chunks(r.input_chunks.chunks))
max_truncation = max(max_truncation, r.truncate)

batch_tokenized_inputs = tokenizer(
Expand Down
5 changes: 4 additions & 1 deletion server/text_generation_server/models/galactica.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
weight_files,
Weights,
)
from text_generation_server.utils.chunks import concat_text_chunks

# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py

Expand Down Expand Up @@ -91,7 +92,9 @@ def from_pb(
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
# Add escape_custom_split_sequence to the CausalLMBatch logic
inputs.append(escape_custom_split_sequence(r.inputs))
inputs.append(
escape_custom_split_sequence(concat_text_chunks(r.input_chunks.chunks))
)
next_token_choosers.append(
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
)
Expand Down
21 changes: 12 additions & 9 deletions server/text_generation_server/models/idefics_causal_lm.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import torch
from io import BytesIO
from PIL import Image
import torch
import time

Expand All @@ -21,11 +22,6 @@
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
from text_generation_server.models.vlm_causal_lm import split

import re

IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")


tracer = trace.get_tracer(__name__)
Expand Down Expand Up @@ -109,7 +105,7 @@ def from_pb_processor(
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
inputs.append(r.input_chunks.chunks)
next_token_choosers.append(
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
)
Expand All @@ -128,8 +124,15 @@ def from_pb_processor(
for inp in inputs:
# Each input is encoded into a list, where each element of this input list is either a string or a URL
prompt = []
for chunk in split(inp):
prompt.append(chunk["content"])
for chunk in inp:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
prompt.append(chunk.text)
elif chunk_type == "image":
image = Image.open(BytesIO(chunk.image.data))
prompt.append(image)
else:
raise RuntimeError(f"Invalid chunk type {chunk_type}")
prompts.append(prompt)

# The processor replaces the call to tokenizer, and
Expand Down
3 changes: 2 additions & 1 deletion server/text_generation_server/models/mamba.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
Generation,
GeneratedText,
)
from text_generation_server.utils.chunks import concat_text_chunks
from text_generation_server.utils.tokens import batch_top_tokens, Sampling
from dataclasses import dataclass
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
Expand Down Expand Up @@ -139,7 +140,7 @@ def from_pb(
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
inputs.append(concat_text_chunks(r.input_chunks.chunks))
next_token_choosers.append(
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
)
Expand Down
39 changes: 16 additions & 23 deletions server/text_generation_server/models/pali_gemma.py
Original file line number Diff line number Diff line change
@@ -1,55 +1,48 @@
from io import BytesIO
from PIL import Image
import torch
import torch.distributed
from opentelemetry import trace
from typing import Optional, Tuple
from typing import Iterable, Optional, Tuple
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLM,
VlmCausalLMBatch,
image_text_replacement,
load_data_uri,
split,
)
from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
PaliGemmaForConditionalGeneration,
)
from transformers import AutoProcessor, AutoConfig, AutoImageProcessor
from transformers import AutoProcessor, AutoConfig

from text_generation_server.pb.generate_pb2 import Request

tracer = trace.get_tracer(__name__)


class PaliGemmaBatch(VlmCausalLMBatch):
@classmethod
def batch_tokenized_inputs(cls, requests, tokenizer, processor, config):
def batch_tokenized_inputs(
cls, requests: Iterable[Request], tokenizer, processor, config
):
batch_inputs = []
image_inputs = []
max_truncation = 0
for r in requests:
chunks = split(r.inputs)
full_text = ""
image_id = 0
for chunk in chunks:
if chunk["type"] == "text":
full_text += "<bos>" + chunk["content"] + "\n"
elif chunk["type"] == "image":
image = chunk["content"]
# Should never receive URLs anymore, processing should be done
# On the rust layer.
# This avoid making n queries per TP
# if image.startswith("https://") or image.startswith("http://"):
# image = processor.image_processor.fetch_images(image)
if image.startswith("data:"):
image = load_data_uri(image)
else:
raise RuntimeError(
"Cannot process input image not starting with data:"
)
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
full_text += "<bos>" + chunk.text + "\n"
elif chunk_type == "image":
image = Image.open(BytesIO(chunk.image.data))
# TODO do_convert_RGB should be on by default ?
image = image.convert("RGB")
image_input = processor.image_processor(image, return_tensors="pt")
full_text += image_text_replacement(image_input, config, image_id)
image_inputs.append(image_input)
else:
raise RuntimeError(f"Invalid chunk type {chunk['type']}")
raise RuntimeError(f"Invalid chunk type {chunk_type}")

batch_inputs.append(full_text)
max_truncation = max(max_truncation, r.truncate)
Expand Down
3 changes: 2 additions & 1 deletion server/text_generation_server/models/seq2seq_lm.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type, Dict

from text_generation_server.utils.chunks import concat_text_chunks
from text_generation_server.utils.tokens import batch_top_tokens
from text_generation_server.models import Model
from text_generation_server.models.types import (
Expand Down Expand Up @@ -93,7 +94,7 @@ def from_pb(
padding_right_offset = 0
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
inputs.append(r.inputs)
inputs.append(concat_text_chunks(r.input_chunks.chunks))
requests_idx_mapping[r.id] = i
decoder_input_lengths.append(1)
next_token_choosers.append(
Expand Down
60 changes: 11 additions & 49 deletions server/text_generation_server/models/vlm_causal_lm.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,9 @@
import re
import torch
import math
from PIL import Image
from io import BytesIO
import base64

from opentelemetry import trace
from typing import Optional, Tuple, List, Type, Dict
from typing import Iterable, Optional, Tuple, List, Type, Dict

from transformers import PreTrainedTokenizerBase
from transformers.image_processing_utils import select_best_resolution
Expand All @@ -18,25 +15,6 @@

tracer = trace.get_tracer(__name__)

IMAGES = re.compile(r"!\[[^\]]*\]\((.*?)\s*(\"(?:.*[^\"])\")?\s*\)")


def split(string) -> List[Dict[str, str]]:
parts = []
cursor = 0
for pattern in IMAGES.finditer(string):
start = pattern.start()
if start != cursor:
parts.append({"type": "text", "content": string[cursor:start]})

parts.append({"type": "image", "content": pattern.group(1)})
cursor = pattern.end()

if cursor != len(string):
parts.append({"type": "text", "content": string[cursor:]})

return parts


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Expand Down Expand Up @@ -129,13 +107,6 @@ def get_number_of_features(height: int, width: int, config) -> int:
return unpadded_features + newline_features + base_features


def load_data_uri(image_uri: str) -> Image.Image:
image_uri = image_uri.split(",")[-1]
content = base64.b64decode(image_uri)
image = Image.open(BytesIO(content))
return image


class VlmCausalLMBatch(FlashCausalLMBatch):
pixel_values: Optional[List[torch.Tensor]]
pixel_attention_mask: Optional[List[torch.Tensor]]
Expand All @@ -159,35 +130,26 @@ def filter(self, request_ids: List[int]):
return batch

@classmethod
def batch_tokenized_inputs(cls, requests, tokenizer, processor, config):
def batch_tokenized_inputs(
cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config
):
batch_inputs = []
image_inputs = []
max_truncation = 0
for r in requests:
chunks = split(r.inputs)
full_text = ""
image_id = 0
for chunk in chunks:
if chunk["type"] == "text":
full_text += chunk["content"]
elif chunk["type"] == "image":
image = chunk["content"]
# Should never receive URLs anymore, processing should be done
# On the rust layer.
# This avoid making n queries per TP
# if image.startswith("https://") or image.startswith("http://"):
# image = processor.image_processor.fetch_images(image)
if image.startswith("data:"):
image = load_data_uri(image)
else:
raise RuntimeError(
"Cannot process input image not starting with data:"
)
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
full_text += chunk.text
elif chunk_type == "image":
image = Image.open(BytesIO(chunk.image.data))
image_input = processor.image_processor(image, return_tensors="pt")
full_text += image_text_replacement(image_input, config, image_id)
image_inputs.append(image_input)
else:
raise RuntimeError(f"Invalid chunk type {chunk['type']}")
raise RuntimeError(f"Invalid chunk type {chunk_type}")

batch_inputs.append(full_text)
max_truncation = max(max_truncation, r.truncate)
Expand Down
27 changes: 27 additions & 0 deletions server/text_generation_server/utils/chunks.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from typing import Iterable

from loguru import logger

from text_generation_server.pb import generate_pb2


def concat_text_chunks(chunks: Iterable[generate_pb2.InputChunk]) -> str:
"""
Concatenate text in text chunks. Non-text chunks are dropped.
"""
text = None
for chunk in chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
if text is None:
text = chunk.text
else:
raise NotImplementedError("Request contained more than one text chunk")
else:
# We cannot reject this, e.g. warmup sends an image chunk.
logger.debug(f"Encountered non-text chunk type {chunk_type}")

if text is None:
raise NotImplementedError("Request without a text chunk")

return text

0 comments on commit 3181443

Please sign in to comment.