Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix ORT CI #1875

Merged
merged 24 commits into from
May 29, 2024
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
aa4f4d5
fix quantizer
IlyasMoutawwakil May 24, 2024
922b85c
change diffusion test
IlyasMoutawwakil May 24, 2024
6282a06
install cpu torch
IlyasMoutawwakil May 24, 2024
8150a3d
fix
IlyasMoutawwakil May 24, 2024
6e86081
fix only for qdq quantizer
IlyasMoutawwakil May 24, 2024
d744499
fix past kv in old model
IlyasMoutawwakil May 24, 2024
3885f8d
warn
IlyasMoutawwakil May 25, 2024
59b8811
Merge branch 'main' into fix-ort-ci
echarlaix May 27, 2024
b01dbef
assert text equal
IlyasMoutawwakil May 28, 2024
e4d259e
Merge branch 'fix-ort-ci' of https://github.com/huggingface/optimum i…
IlyasMoutawwakil May 28, 2024
7d8ecae
Update optimum/onnxruntime/modeling_decoder.py
IlyasMoutawwakil May 28, 2024
62c1f47
use action to free disk
IlyasMoutawwakil May 28, 2024
b458e28
change input text
IlyasMoutawwakil May 28, 2024
2315a5f
Merge branch 'fix-ort-ci' of https://github.com/huggingface/optimum i…
IlyasMoutawwakil May 28, 2024
31a501e
keep large packages
IlyasMoutawwakil May 28, 2024
7322cdd
update python
IlyasMoutawwakil May 28, 2024
9715a6f
test with original gpt2 tokenizer
IlyasMoutawwakil May 28, 2024
45589e1
test
IlyasMoutawwakil May 28, 2024
7a41a42
run everything
IlyasMoutawwakil May 28, 2024
4a6bda2
Update tests/onnxruntime/test_modeling.py
IlyasMoutawwakil May 28, 2024
92fc653
make old onnx model inference tests run in series as they modify the …
IlyasMoutawwakil May 29, 2024
862f3a6
my bad
IlyasMoutawwakil May 29, 2024
bc1a586
compare optimum ort sd with diffusers onnx sd because they're the onl…
IlyasMoutawwakil May 29, 2024
4ee746c
seperate ort test subsets to propagate each subsets' return code
IlyasMoutawwakil May 29, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 22 additions & 19 deletions .github/workflows/test_onnxruntime.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@ name: ONNX Runtime / Python - Test

on:
push:
branches: [ main ]
branches: [main]
pull_request:
branches: [ main ]
branches: [main]

concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
Expand All @@ -22,11 +22,9 @@ jobs:

runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v2

- name: Free disk space
if: matrix.os == 'ubuntu-20.04'
run: |
- name: Free disk space
IlyasMoutawwakil marked this conversation as resolved.
Show resolved Hide resolved
if: matrix.os == 'ubuntu-20.04'
run: |
df -h
sudo apt-get update
sudo apt-get purge -y '^apache.*'
Expand Down Expand Up @@ -67,17 +65,22 @@ jobs:
sudo rm -rf /usr/local/share/chromium > /dev/null 2>&1
df -h

- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Checkout code
uses: actions/checkout@v4

- name: Setup Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}

- name: Install dependencies
run: |
pip install .[tests,onnxruntime]
- name: Install dependencies
run: |
pip install --upgrade pip
pip install --no-cache-dir torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install .[tests,onnxruntime]

- name: Test with pytest
working-directory: tests
run: |
pytest -n auto -m "not run_in_series" --durations=0 -vs onnxruntime
pytest -m "run_in_series" --durations=0 onnxruntime
Comment on lines -82 to -83
Copy link
Member Author

@IlyasMoutawwakil IlyasMoutawwakil May 29, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I changed the order here and started seeing new errors in windows related to input dtype that I didn't see before.
I just noticed but apparently depending on the os, errors propagate into the workflow differently;
in linux based runners (ubuntu), this will run the first command and exit with non-zero code if it fails.
in windows based runners, this will run the first command, and then the second, whether the first succeeds or fails, and will only check the exit code of the last one.

instances:

this is probably due to difference between bash and powershell
@echarlaix @michaelbenayoun @JingyaHuang @mht-sharma @regisss @fxmarty

- name: Test with pytest
working-directory: tests
run: |
pytest -n auto -m "not run_in_series" --durations=0 -v -s onnxruntime
pytest -m "run_in_series" --durations=0 -v -s onnxruntime
39 changes: 30 additions & 9 deletions optimum/onnxruntime/modeling_decoder.py
Original file line number Diff line number Diff line change
Expand Up @@ -509,8 +509,6 @@ def _from_pretrained(
if model_save_dir is None:
model_save_dir = new_model_save_dir

# Since v1.7.0 decoder with past models have fixed sequence length of 1
# To keep these models compatible we set this dimension to dynamic
onnx_model = onnx.load(str(model_cache_path), load_external_data=False)
model_uses_external_data = check_model_uses_external_data(onnx_model)

Expand All @@ -521,24 +519,47 @@ def _from_pretrained(
node.name: [dim.dim_value or dim.dim_param for dim in node.type.tensor_type.shape.dim]
for node in onnx_model.graph.input
}
output_dims = {
node.name: [dim.dim_value or dim.dim_param for dim in node.type.tensor_type.shape.dim]
for node in onnx_model.graph.output
}

override_dims = False

# Since v1.7.0 decoder with past models have fixed sequence length of 1
# To keep these models compatible we set this dimension to dynamic
if input_dims["input_ids"][1] == 1:
input_dims["input_ids"][1] = "sequence_length"
output_dims = {
node.name: [dim.dim_value or dim.dim_param for dim in node.type.tensor_type.shape.dim]
for node in onnx_model.graph.output
}
output_dims["logits"][1] = "sequence_length"
onnx_model = update_model_dims.update_inputs_outputs_dims(onnx_model, input_dims, output_dims)
override_dims = True

# Since https://github.com/huggingface/optimum/pull/871/files
IlyasMoutawwakil marked this conversation as resolved.
Show resolved Hide resolved
# changed axis notation/naming during export, we need to update the dims
for dim in input_dims.keys():
if "past" in dim and input_dims[dim][2] == "past_sequence_length + sequence_length":
input_dims[dim][2] = "past_sequence_length"
override_dims = True

if override_dims:
# this is kinda dangerous, warning the user is the least we can do
echarlaix marked this conversation as resolved.
Show resolved Hide resolved
logger.warning(
"The ONNX model was probably exported with an older version of optimum. "
"We are updating the input/output dimensions and overwriting the model file "
"with new dimensions. This is necessary for the model to work correctly with "
"the current version of optimum. If you encounter any issues, please re-export "
"the model with the latest version of optimum for optimal performance."
)
onnx_model = update_model_dims.update_inputs_outputs_dims(onnx_model, input_dims, output_dims)
onnx.save(
onnx_model,
str(model_cache_path),
save_as_external_data=model_uses_external_data,
all_tensors_to_one_file=True,
location=model_cache_path.name + "_data",
size_threshold=0,
all_tensors_to_one_file=True,
convert_attribute=True,
size_threshold=0,
)

del onnx_model

model = ORTModel.load_model(
Expand Down
91 changes: 37 additions & 54 deletions optimum/onnxruntime/quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,62 +356,45 @@ def quantize(
)

quantizer_factory = QDQQuantizer if use_qdq else ONNXQuantizer
# TODO: maybe this logic can be moved to a method in the configuration class (get_ort_quantizer_kwargs())
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

But the config should not be aware of the ORTQuantizer class right?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

yes, the quant config already contains everything and can infer which quantizer will use its kwargs (from format and is_static

use_qdq = quantization_config.is_static and quantization_config.format == QuantFormat.QDQ
)

# that returns the dictionary of arguments to pass to the quantizer factory depending on the ort version
quantizer_kwargs = {
"model": onnx_model,
"static": quantization_config.is_static,
"per_channel": quantization_config.per_channel,
"mode": quantization_config.mode,
"weight_qType": quantization_config.weights_dtype,
"input_qType": quantization_config.activations_dtype,
"tensors_range": calibration_tensors_range,
"reduce_range": quantization_config.reduce_range,
"nodes_to_quantize": quantization_config.nodes_to_quantize,
"nodes_to_exclude": quantization_config.nodes_to_exclude,
"op_types_to_quantize": [
operator.value if isinstance(operator, ORTQuantizableOperator) else operator
for operator in quantization_config.operators_to_quantize
],
"extra_options": {
"WeightSymmetric": quantization_config.weights_symmetric,
"ActivationSymmetric": quantization_config.activations_symmetric,
"EnableSubgraph": has_subgraphs,
"ForceSymmetric": quantization_config.activations_symmetric and quantization_config.weights_symmetric,
"AddQDQPairToWeight": quantization_config.qdq_add_pair_to_weight,
"DedicatedQDQPair": quantization_config.qdq_dedicated_pair,
"QDQOpTypePerChannelSupportToAxis": quantization_config.qdq_op_type_per_channel_support_to_axis,
},
}

if use_qdq:
quantizer_kwargs.pop("mode")
if parse(ort_version) >= Version("1.18.0"):
# The argument `static` has been removed from the qdq quantizer factory in ORT 1.18
quantizer_kwargs.pop("static")

if parse(ort_version) >= Version("1.13.0"):
# The argument `input_qType` has been changed into `activation_qType` from ORT 1.13
quantizer = quantizer_factory(
model=onnx_model,
static=quantization_config.is_static,
per_channel=quantization_config.per_channel,
mode=quantization_config.mode,
weight_qType=quantization_config.weights_dtype,
activation_qType=quantization_config.activations_dtype,
tensors_range=calibration_tensors_range,
reduce_range=quantization_config.reduce_range,
nodes_to_quantize=quantization_config.nodes_to_quantize,
nodes_to_exclude=quantization_config.nodes_to_exclude,
op_types_to_quantize=[
operator.value if isinstance(operator, ORTQuantizableOperator) else operator
for operator in quantization_config.operators_to_quantize
],
extra_options={
"WeightSymmetric": quantization_config.weights_symmetric,
"ActivationSymmetric": quantization_config.activations_symmetric,
"EnableSubgraph": has_subgraphs,
"ForceSymmetric": quantization_config.activations_symmetric
and quantization_config.weights_symmetric,
"AddQDQPairToWeight": quantization_config.qdq_add_pair_to_weight,
"DedicatedQDQPair": quantization_config.qdq_dedicated_pair,
"QDQOpTypePerChannelSupportToAxis": quantization_config.qdq_op_type_per_channel_support_to_axis,
},
)
else:
quantizer = quantizer_factory(
model=onnx_model,
static=quantization_config.is_static,
per_channel=quantization_config.per_channel,
mode=quantization_config.mode,
weight_qType=quantization_config.weights_dtype,
input_qType=quantization_config.activations_dtype,
tensors_range=calibration_tensors_range,
reduce_range=quantization_config.reduce_range,
nodes_to_quantize=quantization_config.nodes_to_quantize,
nodes_to_exclude=quantization_config.nodes_to_exclude,
op_types_to_quantize=[
operator.value if isinstance(operator, ORTQuantizableOperator) else operator
for operator in quantization_config.operators_to_quantize
],
extra_options={
"WeightSymmetric": quantization_config.weights_symmetric,
"ActivationSymmetric": quantization_config.activations_symmetric,
"EnableSubgraph": False,
"ForceSymmetric": quantization_config.activations_symmetric
and quantization_config.weights_symmetric,
"AddQDQPairToWeight": quantization_config.qdq_add_pair_to_weight,
"DedicatedQDQPair": quantization_config.qdq_dedicated_pair,
"QDQOpTypePerChannelSupportToAxis": quantization_config.qdq_op_type_per_channel_support_to_axis,
},
)
# The argument `input_qType` has been changed into `activation_qType` in ORT 1.13
quantizer_kwargs["activation_qType"] = quantizer_kwargs.pop("input_qType")

quantizer = quantizer_factory(**quantizer_kwargs)

LOGGER.info("Quantizing model...")
quantizer.quantize_model()
Expand Down
9 changes: 7 additions & 2 deletions tests/onnxruntime/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -2276,6 +2276,7 @@ class ORTModelForCausalLMIntegrationTest(ORTModelTestMixin):
@parameterized.expand([(False,), (True,)])
def test_inference_old_onnx_model(self, use_cache):
model_id = "optimum/gpt2"
tokenizer = get_preprocessor(model_id)
echarlaix marked this conversation as resolved.
Show resolved Hide resolved
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = get_preprocessor(model_id)
text = "This is a sample output"
Expand All @@ -2284,11 +2285,15 @@ def test_inference_old_onnx_model(self, use_cache):

self.assertEqual(onnx_model.use_cache, use_cache)
self.assertEqual(onnx_model.model_path.name, ONNX_DECODER_WITH_PAST_NAME if use_cache else ONNX_DECODER_NAME)
outputs_onnx = onnx_model.generate(
onnx_outputs = onnx_model.generate(
**tokens, num_beams=1, do_sample=False, min_new_tokens=30, max_new_tokens=30
)
onnx_text_outputs = tokenizer.decode(onnx_outputs[0], skip_special_tokens=True)

outputs = model.generate(**tokens, num_beams=1, do_sample=False, min_new_tokens=30, max_new_tokens=30)
self.assertTrue(torch.allclose(outputs_onnx, outputs))
text_outputs = tokenizer.decode(outputs[0], skip_special_tokens=True)

self.assertEqual(onnx_text_outputs, text_outputs)

def test_load_model_from_hub_onnx(self):
model = ORTModelForCausalLM.from_pretrained("fxmarty/onnx-tiny-random-gpt2-without-merge")
Expand Down
19 changes: 14 additions & 5 deletions tests/onnxruntime/test_stable_diffusion_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -418,15 +418,19 @@ def test_compare_diffusers_pipeline(self, model_arch: str):
model_args = {"test_name": model_arch, "model_arch": model_arch}
self._setup(model_args)
ort_pipeline = self.ORTMODEL_CLASS.from_pretrained(self.onnx_model_dirs[model_arch])
diffusers_pipeline = self.ORTMODEL_CLASS.auto_model_class.from_pretrained(MODEL_NAMES[model_arch])
height, width = 64, 64
latents_shape = (
1,
ort_pipeline.vae_decoder.config["latent_channels"],
height // ort_pipeline.vae_scale_factor,
width // ort_pipeline.vae_scale_factor,
)
latents = np.random.randn(*latents_shape).astype(np.float32)
np_latents = np.random.rand(*latents_shape).astype(np.float32)
torch_latents = torch.from_numpy(np_latents)
inputs = self.generate_inputs(height=height, width=width)

# Not really needed if we're not testing using slices
inputs["image"] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
Expand All @@ -437,10 +441,15 @@ def test_compare_diffusers_pipeline(self, model_arch: str):
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
).resize((width, height))

outputs = ort_pipeline(**inputs, latents=latents).images
self.assertEqual(outputs.shape, (1, height, width, 3))
expected_slice = np.array([0.5442, 0.3002, 0.5665, 0.6485, 0.4421, 0.6441, 0.5778, 0.5076, 0.5612])
self.assertTrue(np.allclose(outputs[0, -3:, -3:, -1].flatten(), expected_slice, atol=1e-4))
# TODO: it's more maintainable to test against diffusers output instead of the slices
# should we do that everywhere ?
ort_outputs = ort_pipeline(**inputs, latents=np_latents).images
self.assertEqual(ort_outputs.shape, (1, height, width, 3))

diffusers_outputs = diffusers_pipeline(**inputs, latents=torch_latents).images
self.assertEqual(diffusers_outputs.shape, (1, height, width, 3))

self.assertTrue(np.allclose(ort_outputs, diffusers_outputs, atol=1e-4))

def generate_inputs(self, height=128, width=128, batch_size=1):
inputs = super(ORTStableDiffusionInpaintPipelineTest, self).generate_inputs(height, width)
Expand Down
Loading