Skip to content

Commit

Permalink
OV migrate model export on pytorch frontend (#397)
Browse files Browse the repository at this point in the history
* switch on pytorch frontend

* fixes for seq2seq

* wip

* cleanup

* fix style

* revert changes not related to pr

* clear ts registry:

* remove ov dev from deps

* update tests

* return serialize back

* switch on pytorch frontend

* fixes for seq2seq

* wip

* cleanup

* fix style

* revert changes not related to pr

* clear ts registry:

* remove ov dev from deps

* return serialize back

* Added weights compression

* Changed NNCF version to develop

* resolve dictionary as input

* fix llama export in quantization flow

* rebase with fixes

* update prerelease package

* fix onnx name issues

* experiments with tests

* better workaround for nncf patch torch ops and apply review comments

* remove flag from_onnx

* refactoring

* docstrings and typehints

* small fixes

* add docstring to main_export

* fix timm models

* fix circular imports

* update ov version

* revert excluding deberta

* update nncf on package

---------

Co-authored-by: Alexander <[email protected]>
  • Loading branch information
eaidova and AlexKoff88 authored Sep 19, 2023
1 parent 681b946 commit 4b8ed24
Show file tree
Hide file tree
Showing 16 changed files with 1,026 additions and 108 deletions.
5 changes: 5 additions & 0 deletions optimum/exporters/openvino/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
from .__main__ import main_export
from .convert import export, export_models, export_pytorch_via_onnx


__all__ = ["main_export", "export", "export_models"]
293 changes: 293 additions & 0 deletions optimum/exporters/openvino/__main__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,293 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
from pathlib import Path
from typing import Any, Callable, Dict, Optional, Union

from requests.exceptions import ConnectionError as RequestsConnectionError
from transformers import AutoTokenizer
from transformers.utils import is_torch_available

from optimum.exporters import TasksManager
from optimum.exporters.onnx import __main__ as optimum_main
from optimum.exporters.onnx.base import OnnxConfig, OnnxConfigWithPast
from optimum.utils import DEFAULT_DUMMY_SHAPES
from optimum.utils.save_utils import maybe_save_preprocessors

from .convert import export_models


OV_XML_FILE_NAME = "openvino_model.xml"

logger = logging.getLogger(__name__)

if is_torch_available():
import torch


def main_export(
model_name_or_path: str,
output: Union[str, Path],
task: str = "auto",
device: str = "cpu",
fp16: Optional[bool] = False,
framework: Optional[str] = None,
cache_dir: Optional[str] = None,
trust_remote_code: bool = False,
pad_token_id: Optional[int] = None,
subfolder: str = "",
revision: str = "main",
force_download: bool = False,
local_files_only: bool = False,
use_auth_token: Optional[Union[bool, str]] = None,
model_kwargs: Optional[Dict[str, Any]] = None,
custom_onnx_configs: Optional[Dict[str, "OnnxConfig"]] = None,
fn_get_submodels: Optional[Callable] = None,
**kwargs_shapes,
):
"""
Full-suite OpenVINO export.
Args:
> Required parameters
model_name_or_path (`str`):
Model ID on huggingface.co or path on disk to the model repository to export.
output (`Union[str, Path]`):
Path indicating the directory where to store the generated ONNX model.
> Optional parameters
task (`Optional[str]`, defaults to `None`):
The task to export the model for. If not specified, the task will be auto-inferred based on the model. For decoder models,
use `xxx-with-past` to export the model using past key values in the decoder.
device (`str`, defaults to `"cpu"`):
The device to use to do the export. Defaults to "cpu".
fp16 (`Optional[bool]`, defaults to `"False"`):
Use half precision during the export. PyTorch-only, requires `device="cuda"`.
framework (`Optional[str]`, defaults to `None`):
The framework to use for the ONNX export (`"pt"` or `"tf"`). If not provided, will attempt to automatically detect
the framework for the checkpoint.
cache_dir (`Optional[str]`, defaults to `None`):
Path indicating where to store cache. The default Hugging Face cache path will be used by default.
trust_remote_code (`bool`, defaults to `False`):
Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories
you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the
model repository.
pad_token_id (`Optional[int]`, defaults to `None`):
This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it.
subfolder (`str`, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo either locally or on huggingface.co, you can
specify the folder name here.
revision (`str`, defaults to `"main"`):
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id.
force_download (`bool`, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
local_files_only (`Optional[bool]`, defaults to `False`):
Whether or not to only look at local files (i.e., do not try to download the model).
use_auth_token (`Optional[str]`, defaults to `None`):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `transformers-cli login` (stored in `~/.huggingface`).
model_kwargs (`Optional[Dict[str, Any]]`, defaults to `None`):
Experimental usage: keyword arguments to pass to the model during
the export. This argument should be used along the `custom_onnx_configs` argument
in case, for example, the model inputs/outputs are changed (for example, if
`model_kwargs={"output_attentions": True}` is passed).
custom_onnx_configs (`Optional[Dict[str, OnnxConfig]]`, defaults to `None`):
Experimental usage: override the default ONNX config used for the given model. This argument may be useful for advanced users that desire a finer-grained control on the export. An example is available [here](https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model).
fn_get_submodels (`Optional[Callable]`, defaults to `None`):
Experimental usage: Override the default submodels that are used at the export. This is
especially useful when exporting a custom architecture that needs to split the ONNX (e.g. encoder-decoder). If unspecified with custom models, optimum will try to use the default submodels used for the given task, with no guarantee of success.
**kwargs_shapes (`Dict`):
Shapes to use during inference. This argument allows to override the default shapes used during the ONNX export.
Example usage:
```python
>>> from optimum.exporters.openvino import main_export
>>> main_export("gpt2", output="gpt2_onnx/")
```
"""
output = Path(output)
if not output.exists():
output.mkdir(parents=True)

original_task = task
task = TasksManager.map_from_synonym(task)

framework = TasksManager.determine_framework(model_name_or_path, subfolder=subfolder, framework=framework)

# get the shapes to be used to generate dummy inputs
input_shapes = {}
for input_name in DEFAULT_DUMMY_SHAPES.keys():
input_shapes[input_name] = (
kwargs_shapes[input_name] if input_name in kwargs_shapes else DEFAULT_DUMMY_SHAPES[input_name]
)

torch_dtype = None if fp16 is False else torch.float16

if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_name_or_path)
except KeyError as e:
raise KeyError(
f"The task could not be automatically inferred. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}"
)
except RequestsConnectionError as e:
raise RequestsConnectionError(
f"The task could not be automatically inferred as this is available only for models hosted on the Hugging Face Hub. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}"
)

model = TasksManager.get_model_from_task(
task,
model_name_or_path,
subfolder=subfolder,
revision=revision,
cache_dir=cache_dir,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
force_download=force_download,
trust_remote_code=trust_remote_code,
framework=framework,
torch_dtype=torch_dtype,
device=device,
)

custom_architecture = False
is_stable_diffusion = "stable-diffusion" in task
model_type = "stable-diffusion" if is_stable_diffusion else model.config.model_type.replace("_", "-")

if not is_stable_diffusion:
if model_type in TasksManager._UNSUPPORTED_CLI_MODEL_TYPE:
raise ValueError(
f"{model_type} is not supported yet. Only {TasksManager._SUPPORTED_CLI_MODEL_TYPE} are supported. "
f"If you want to support {model_type} please propose a PR or open up an issue."
)
if model.config.model_type.replace("-", "_") not in TasksManager.get_supported_model_type_for_task(
task, exporter="onnx"
):
custom_architecture = True

if custom_architecture and custom_onnx_configs is None:
raise ValueError(
"Trying to export a model with a custom architecture, but no custom onnx configuration was passed as `custom_onnx_configs`. Please refer to https://huggingface.co/docs/optimum/main/en/exporters/onnx/usage_guides/export_a_model#custom-export-of-transformers-models for an example on how to export custom models."
)

if custom_architecture and original_task == "auto":
raise ValueError(
f'Automatic task detection is not supported with custom architectures. Please specify the `task` argument. Suggestion: task="{task}" (or task="{task}-with-past" if the model is decoder-based and supports KV cache)'
)

if (
not custom_architecture
and not is_stable_diffusion
and task + "-with-past" in TasksManager.get_supported_tasks_for_model_type(model_type, "onnx")
):
if original_task == "auto": # Make -with-past the default if --task was not explicitely specified
task = task + "-with-past"
else:
logger.info(
f"The task `{task}` was manually specified, and past key values will not be reused in the decoding."
f" if needed, please pass `--task {task}-with-past` to export using the past key values."
)

if original_task == "auto":
synonyms_for_task = sorted(TasksManager.synonyms_for_task(task))
if synonyms_for_task:
synonyms_for_task = ", ".join(synonyms_for_task)
possible_synonyms = f" (possible synonyms are: {synonyms_for_task})"
else:
possible_synonyms = ""
logger.info(f"Automatic task detection to {task}{possible_synonyms}.")
onnx_config, models_and_onnx_configs = optimum_main._get_submodels_and_onnx_configs(
model=model,
task=task,
monolith=False,
custom_onnx_configs=custom_onnx_configs if custom_onnx_configs is not None else {},
custom_architecture=custom_architecture,
fn_get_submodels=fn_get_submodels,
_variant="default",
)

if not is_stable_diffusion:
needs_pad_token_id = (
isinstance(onnx_config, OnnxConfigWithPast)
and getattr(model.config, "pad_token_id", None) is None
and task in ["text-classification"]
)
if needs_pad_token_id:
if pad_token_id is not None:
model.config.pad_token_id = pad_token_id
else:
try:
tok = AutoTokenizer.from_pretrained(model_name_or_path)
model.config.pad_token_id = tok.pad_token_id
except Exception:
raise ValueError(
"Could not infer the pad token id, which is needed in this case, please provide it with the --pad_token_id argument"
)
# Saving the model config and preprocessor as this is needed sometimes.
model.config.save_pretrained(output)
generation_config = getattr(model, "generation_config", None)
if generation_config is not None:
generation_config.save_pretrained(output)
maybe_save_preprocessors(model_name_or_path, output)

if model.config.is_encoder_decoder and task.startswith("text-generation"):
raise ValueError(
f"model.config.is_encoder_decoder is True and task is `{task}`, which are incompatible. If the task was auto-inferred, please fill a bug report"
f"at https://github.com/huggingface/optimum, if --task was explicitely passed, make sure you selected the right task for the model,"
f" referring to `optimum.exporters.tasks.TaskManager`'s `_TASKS_TO_AUTOMODELS`."
)

files_subpaths = None
else:
# save the subcomponent configuration
for model_name in models_and_onnx_configs:
subcomponent = models_and_onnx_configs[model_name][0]
if hasattr(subcomponent, "save_config"):
subcomponent.save_config(output / model_name)
elif hasattr(subcomponent, "config") and hasattr(subcomponent.config, "save_pretrained"):
subcomponent.config.save_pretrained(output / model_name)

files_subpaths = [os.path.join(name_dir, OV_XML_FILE_NAME) for name_dir in models_and_onnx_configs]

# Saving the additional components needed to perform inference.
model.scheduler.save_pretrained(output.joinpath("scheduler"))

feature_extractor = getattr(model, "feature_extractor", None)
if feature_extractor is not None:
feature_extractor.save_pretrained(output.joinpath("feature_extractor"))

tokenizer = getattr(model, "tokenizer", None)
if tokenizer is not None:
tokenizer.save_pretrained(output.joinpath("tokenizer"))

tokenizer_2 = getattr(model, "tokenizer_2", None)
if tokenizer_2 is not None:
tokenizer_2.save_pretrained(output.joinpath("tokenizer_2"))

model.save_config(output)

export_models(
models_and_onnx_configs=models_and_onnx_configs,
output_dir=output,
output_names=files_subpaths,
input_shapes=input_shapes,
device=device,
model_kwargs=model_kwargs,
)
Loading

0 comments on commit 4b8ed24

Please sign in to comment.