Skip to content

Commit

Permalink
feat: Port Datafusion Covariance to Comet
Browse files Browse the repository at this point in the history
  • Loading branch information
Huaxin Gao committed Mar 26, 2024
1 parent b0234a6 commit 06bbb36
Show file tree
Hide file tree
Showing 6 changed files with 504 additions and 1 deletion.
394 changes: 394 additions & 0 deletions core/src/execution/datafusion/expressions/covariance.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,394 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! Defines physical expressions that can evaluated at runtime during query execution
use std::any::Any;
use std::sync::Arc;

use arrow::array::Float64Array;
use arrow::{
array::{ArrayRef, Int64Array},
compute::cast,
datatypes::DataType,
datatypes::Field,
};
use datafusion::logical_expr::Accumulator;
use datafusion_common::{downcast_value, unwrap_or_internal_err, ScalarValue};
use datafusion_common::{DataFusionError, Result};
use datafusion_physical_expr::{aggregate::utils::down_cast_any_ref, expressions::format_state_name, AggregateExpr, PhysicalExpr};
use datafusion_physical_expr::expressions::StatsType;

/// COVAR and COVAR_SAMP aggregate expression
#[derive(Debug, Clone)]
pub struct Covariance {
name: String,
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
}

/// COVAR_POP aggregate expression
#[derive(Debug)]
pub struct CovariancePop {
name: String,
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
}

impl Covariance {
/// Create a new COVAR aggregate function
pub fn new(
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
) -> Self {
// the result of covariance just support FLOAT64 data type.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
expr1,
expr2,
}
}
}

impl AggregateExpr for Covariance {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, DataType::Float64, true))
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CovarianceAccumulator::try_new(StatsType::Sample)?))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Int64,
true,
),
Field::new(
format_state_name(&self.name, "mean1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean2"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "algo_const"),
DataType::Float64,
true,
),
])
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr1.clone(), self.expr2.clone()]
}

fn name(&self) -> &str {
&self.name
}
}

impl PartialEq<dyn Any> for Covariance {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name && self.expr1.eq(&x.expr1) && self.expr2.eq(&x.expr2)
})
.unwrap_or(false)
}
}

impl CovariancePop {
/// Create a new COVAR_POP aggregate function
pub fn new(
expr1: Arc<dyn PhysicalExpr>,
expr2: Arc<dyn PhysicalExpr>,
name: impl Into<String>,
data_type: DataType,
) -> Self {
// the result of covariance just support FLOAT64 data type.
assert!(matches!(data_type, DataType::Float64));
Self {
name: name.into(),
expr1,
expr2,
}
}
}

impl AggregateExpr for CovariancePop {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}

fn field(&self) -> Result<Field> {
Ok(Field::new(&self.name, DataType::Float64, true))
}

fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CovarianceAccumulator::try_new(
StatsType::Population,
)?))
}

fn state_fields(&self) -> Result<Vec<Field>> {
Ok(vec![
Field::new(
format_state_name(&self.name, "count"),
DataType::Int64,
true,
),
Field::new(
format_state_name(&self.name, "mean1"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "mean2"),
DataType::Float64,
true,
),
Field::new(
format_state_name(&self.name, "algo_const"),
DataType::Float64,
true,
),
])
}

fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> {
vec![self.expr1.clone(), self.expr2.clone()]
}

fn name(&self) -> &str {
&self.name
}
}

impl PartialEq<dyn Any> for CovariancePop {
fn eq(&self, other: &dyn Any) -> bool {
down_cast_any_ref(other)
.downcast_ref::<Self>()
.map(|x| {
self.name == x.name && self.expr1.eq(&x.expr1) && self.expr2.eq(&x.expr2)
})
.unwrap_or(false)
}
}

/// An accumulator to compute covariance
#[derive(Debug)]
pub struct CovarianceAccumulator {
algo_const: f64,
mean1: f64,
mean2: f64,
count: i64,
stats_type: StatsType,
}

impl CovarianceAccumulator {
/// Creates a new `CovarianceAccumulator`
pub fn try_new(s_type: StatsType) -> Result<Self> {
Ok(Self {
algo_const: 0_f64,
mean1: 0_f64,
mean2: 0_f64,
count: 0_i64,
stats_type: s_type,
})
}

pub fn get_count(&self) -> i64 {
self.count
}

pub fn get_mean1(&self) -> f64 {
self.mean1
}

pub fn get_mean2(&self) -> f64 {
self.mean2
}

pub fn get_algo_const(&self) -> f64 {
self.algo_const
}
}

impl Accumulator for CovarianceAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.count),
ScalarValue::from(self.mean1),
ScalarValue::from(self.mean2),
ScalarValue::from(self.algo_const),
])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;

let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);
let new_count = self.count + 1;
let delta1 = value1 - self.mean1;
let new_mean1 = delta1 / new_count as f64 + self.mean1;
let delta2 = value2 - self.mean2;
let new_mean2 = delta2 / new_count as f64 + self.mean2;
let new_c = delta1 * (value2 - new_mean2) + self.algo_const;

self.count += 1;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);

let new_count = self.count - 1;
let delta1 = self.mean1 - value1;
let new_mean1 = delta1 / new_count as f64 + self.mean1;
let delta2 = self.mean2 - value2;
let new_mean2 = delta2 / new_count as f64 + self.mean2;
let new_c = self.algo_const - delta1 * (new_mean2 - value2);

self.count -= 1;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], Int64Array);
let means1 = downcast_value!(states[1], Float64Array);
let means2 = downcast_value!(states[2], Float64Array);
let cs = downcast_value!(states[3], Float64Array);

for i in 0..counts.len() {
let c = counts.value(i);
if c == 0 {
continue;
}
let new_count = self.count + c;
let new_count_casted = new_count as f64;
let count_casted = self.count as f64;
let new_mean1 = self.mean1 * count_casted / new_count_casted
+ means1.value(i) * c as f64 / new_count_casted;
let new_mean2 = self.mean2 * count_casted / new_count_casted
+ means2.value(i) * c as f64 / new_count_casted;
let delta1 = self.mean1 - means1.value(i);
let delta2 = self.mean2 - means2.value(i);
let new_c = self.algo_const
+ cs.value(i)
+ delta1 * delta2 * self.count as f64 * c as f64 / new_count as f64;

self.count = new_count;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}

fn evaluate(&mut self) -> Result<ScalarValue> {
println!("evaluate evaluate evaluate");
let count = match self.stats_type {
datafusion_physical_expr::expressions::StatsType::Population => self.count,
StatsType::Sample => {
if self.count > 0 {
self.count - 1
} else {
self.count
}
}
};

if count == 0 {
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(Some(self.algo_const / count as f64)))
}
}

fn size(&self) -> usize {
std::mem::size_of_val(self)
}
}
1 change: 1 addition & 0 deletions core/src/execution/datafusion/expressions/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -32,3 +32,4 @@ pub mod subquery;
pub mod sum_decimal;
pub mod temporal;
mod utils;
pub mod covariance;
Loading

0 comments on commit 06bbb36

Please sign in to comment.