Modular NLP pipeline manager.
OpusPocus is aimed at simplifying the description and execution of popular and custom NLP pipelines, including dataset preprocessing, model training, fine-tuning and evaluation. The pipeline manager supports execution using simple CLI (Bash) or common HPC schedulers (Slurm).
It uses OpusCleaner for data preparation and OpusTrainer for training scheduling (development in progress).
go.py
- pipeline manager entry scriptopuspocus/
- OpusPocus modulesopuspocus_cli/
- OpusPocus CLI subcommandsconfig/
- default configuration files (pipeline config, marian training config, ...)examples/
- pipeline manager usage examplesscripts/
- helper scripts, at this moment not directly implemented in OpusPocustests/
- unit tests
- Install MarianNMT
$ ./scripts/install_marian_gpu.sh PATH_TO_CUDA CUDNN_VERSION [NUM_THREADS]
Alternatively, you can usel scripts/install_marian_cpu.sh
for CPU version. Note that the scripts may require modification based on your system.
- (Optional) Setup the Python virtual environment (using virtualenv):
$ /usr/bin/virtualenv -p /usr/bin/python3.10 python-venv
- Install the Python dependencies.
(source python-venv/bin/activate # if using virtual environment)
$ pip install --upgrade pip setuptools
$ pip install -r requirements.txt
- Setup the Python virtual environment for Opuscleaner. (OpusCleaner is currently not supported by Python>=3.10.)
$ /usr/bin/virtualenv -p /usr/bin/python3.9 opuscleaner-venv
- Activate the OpusCleaner virtualenv and install OpusCleaner's dependencies
$ source opuscleaner-venv/bin/activate
$ pip install --upgrade pip setuptools
$ pip install -r requirements-opuscleaner.txt
Either run the main script go.py
or the subcommand scripts from opuspocus_cli/
directory.
Run the scripts directly from the root directory for this repository.
(You may need to add the path to the local OpusPocus repository directory to your PYTHONPATH.)
You can execute ./go.py --help
for general description or ./go.py <subcommand> --help
to list the available subcommand options.
Run ./go.py run
(or opuspocus_cli/run
) while providing a pipeline configuration file to execute a new pipeline:
$ ./go.py --pipeline-dir <pipeline_destination> --pipeline-donfig <config_file> --runner <runner>
Alternatively, run ./go.py run
while providing an existing pipeline directory to rerun a failed pipeline execution:
$ ./go.py run --pipeline-dir <pipeline_dir> --runner <runner>
You can use --reinit
to reinitialize the exitisting pipeline before running.
You can use --resubmit-done
to also execute pipeline steps in the DONE state.
Lastly, you can also stop and resubmit a running pipeline using --stop-previous-run
$ ./go.py run --pipeline-dir <pipeline_dir> --stop-previous-run
This is simialr to:
$ ./go.py stop --pipeline-dir <pipeline_dir>
$ ./go.py run --pipeline-dir <pipeline_dir>
stop
- stops the execution of a running pipelinestatus
- prints the status of a pipeline its stepstraceback
- prints the dependency structure of a pipeline
- Download the data and setup the dataset directory structure.
$ scripts/prepare_data.en-eu.sh
- Initialize and execute the (data preprocessing) pipeline.
$ mkdir -p experiments/en-eu/preprocess.simple
$ ./go.py run \
--pipeline-config config/pipeline.preprocess.yml \
--pipeline-dir experiments/en-eu/preprocess.simple \
--runner bash
--pipeline-config
(required) provides the details about the pipeline steps and their dependencies--pipeline-dir
(optional) overrides thepipeline.pipeline_dir
value from the pipeline-config--runner
(required) runner to be used for pipeline execution. Use --runner slurm for more effective HPC execution (if Slurm is available)
- Check the pipeline status.
$ ./go.py traceback --pipeline-dir experiments/en-eu/preprocess.simple
OR
$ ./go.py status --pipeline-dir experiments/en-eu/preprocess.simple
- Check the preprocessing pipeline status (The data preprocessing pipeline must be finished, i.e. all steps must be in the DONE step)
$ ./go.py status --pipeline-dir experiments/en-eu/preprocess.simple
- Initialize and execute the training pipeline.
$ mkdir -p experiments/en-eu/train.simple
$ ./go.py run \
--pipeline-config config/pipeline.train.simple.yml \
--pipeline-dir experiments/en-eu/train.simple \
--runner bash
TBD