-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
249 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
# TODO | ||
import numpy as np | ||
import argparse | ||
import torch | ||
from torchvision.utils import make_grid | ||
import tempfile | ||
import gradio as gr | ||
from omegaconf import OmegaConf | ||
from einops import rearrange | ||
from scripts.pub.V3D_512 import ( | ||
sample_one, | ||
get_batch, | ||
get_unique_embedder_keys_from_conditioner, | ||
load_model, | ||
) | ||
from sgm.util import default, instantiate_from_config | ||
from safetensors.torch import load_file as load_safetensors | ||
from PIL import Image | ||
from kiui.op import recenter | ||
from torchvision.transforms import ToTensor | ||
from einops import rearrange, repeat | ||
import rembg | ||
import os | ||
from glob import glob | ||
|
||
|
||
def do_sample( | ||
image, | ||
model, | ||
clip_model, | ||
ae_model, | ||
device, | ||
num_frames, | ||
num_steps, | ||
decoding_t, | ||
border_ratio, | ||
ignore_alpha, | ||
rembg_session, | ||
output_folder, | ||
): | ||
# if image.mode == "RGBA": | ||
# image = image.convert("RGB") | ||
w, h = image.size | ||
image = Image.fromarray(image) | ||
|
||
if border_ratio > 0: | ||
if image.mode != "RGBA" or ignore_alpha: | ||
image = image.convert("RGB") | ||
image = np.asarray(image) | ||
carved_image = rembg.remove(image, session=rembg_session) # [H, W, 4] | ||
else: | ||
image = np.asarray(image) | ||
carved_image = image | ||
mask = carved_image[..., -1] > 0 | ||
image = recenter(carved_image, mask, border_ratio=border_ratio) | ||
image = image.astype(np.float32) / 255.0 | ||
if image.shape[-1] == 4: | ||
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4]) | ||
image = Image.fromarray((image * 255).astype(np.uint8)) | ||
else: | ||
print("Ignore border ratio") | ||
image = image.resize((512, 512)) | ||
|
||
image = ToTensor()(image) | ||
image = image * 2.0 - 1.0 | ||
|
||
image = image.unsqueeze(0).to(device) | ||
H, W = image.shape[2:] | ||
assert image.shape[1] == 3 | ||
F = 8 | ||
C = 4 | ||
shape = (num_frames, C, H // F, W // F) | ||
|
||
value_dict = {} | ||
value_dict["motion_bucket_id"] = 0 | ||
value_dict["fps_id"] = 0 | ||
value_dict["cond_aug"] = 0.05 | ||
value_dict["cond_frames_without_noise"] = clip_model(image) | ||
value_dict["cond_frames"] = ae_model.encode(image) | ||
value_dict["cond_frames"] += 0.05 * torch.randn_like(value_dict["cond_frames"]) | ||
value_dict["cond_aug"] = 0.05 | ||
|
||
with torch.no_grad(): | ||
with torch.autocast(device): | ||
batch, batch_uc = get_batch( | ||
get_unique_embedder_keys_from_conditioner(model.conditioner), | ||
value_dict, | ||
[1, num_frames], | ||
T=num_frames, | ||
device=device, | ||
) | ||
c, uc = model.conditioner.get_unconditional_conditioning( | ||
batch, | ||
batch_uc=batch_uc, | ||
force_uc_zero_embeddings=[ | ||
"cond_frames", | ||
"cond_frames_without_noise", | ||
], | ||
) | ||
|
||
for k in ["crossattn", "concat"]: | ||
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) | ||
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) | ||
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) | ||
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) | ||
|
||
randn = torch.randn(shape, device=device) | ||
randn = randn.to(device) | ||
|
||
additional_model_inputs = {} | ||
additional_model_inputs["image_only_indicator"] = torch.zeros( | ||
2, num_frames | ||
).to(device) | ||
additional_model_inputs["num_video_frames"] = batch["num_video_frames"] | ||
|
||
def denoiser(input, sigma, c): | ||
return model.denoiser( | ||
model.model, input, sigma, c, **additional_model_inputs | ||
) | ||
|
||
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) | ||
model.en_and_decode_n_samples_a_time = decoding_t | ||
samples_x = model.decode_first_stage(samples_z) | ||
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) | ||
|
||
os.makedirs(output_folder, exist_ok=True) | ||
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | ||
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | ||
|
||
frames = ( | ||
(rearrange(samples, "t c h w -> t h w c") * 255) | ||
.cpu() | ||
.numpy() | ||
.astype(np.uint8) | ||
) | ||
|
||
return frames | ||
|
||
|
||
def change_model_params(model, min_cfg, max_cfg): | ||
model.params.sampler.guider.max_scale = max_cfg | ||
model.params.sampler.guider.min_scale = min_cfg | ||
|
||
|
||
def launch(device="cuda", port=4321, share=False): | ||
model_config = "scripts/pub/configs/V3D_512.yaml" | ||
num_frames = OmegaConf.load( | ||
model_config | ||
).model.params.sampler_config.params.guider_config.params.num_frames | ||
print("Detected num_frames:", num_frames) | ||
num_steps = default(num_steps, 25) | ||
output_folder = default(output_folder, f"outputs/V3D_512") | ||
decoding_t = min(decoding_t, num_frames) | ||
|
||
sd = load_safetensors("./ckpts/svd_xt.safetensors") | ||
clip_model_config = OmegaConf.load("configs/embedder/clip_image.yaml") | ||
clip_model = instantiate_from_config(clip_model_config).eval() | ||
clip_sd = dict() | ||
for k, v in sd.items(): | ||
if "conditioner.embedders.0" in k: | ||
clip_sd[k.replace("conditioner.embedders.0.", "")] = v | ||
clip_model.load_state_dict(clip_sd) | ||
clip_model = clip_model.to(device) | ||
|
||
ae_model_config = OmegaConf.load("configs/ae/video.yaml") | ||
ae_model = instantiate_from_config(ae_model_config).eval() | ||
encoder_sd = dict() | ||
for k, v in sd.items(): | ||
if "first_stage_model" in k: | ||
encoder_sd[k.replace("first_stage_model.", "")] = v | ||
ae_model.load_state_dict(encoder_sd) | ||
ae_model = ae_model.to(device) | ||
rembg_session = rembg.new_session() | ||
|
||
model = load_model(model_config, device, num_frames, num_steps, 3.5, 3.5) | ||
|
||
with gr.Blocks(title="V3D", theme=gr.themes.Monochrome()) as demo: | ||
with gr.Row(equal_height=True): | ||
with gr.Column(): | ||
input_image = gr.Image(value=None, label="Input Image") | ||
|
||
border_ratio_slider = gr.Slider( | ||
value=0.05, | ||
label="Border Ratio", | ||
min=0.05, | ||
max=0.5, | ||
step=0.05, | ||
) | ||
min_guidance_slider = gr.Slider( | ||
value=0.05, | ||
label="Min CFG Value", | ||
min=0.05, | ||
max=0.5, | ||
step=0.05, | ||
) | ||
max_guidance_slider = gr.Slider( | ||
value=0.05, | ||
label="Max CFG Value", | ||
min=0.05, | ||
max=0.5, | ||
step=0.05, | ||
) | ||
run_button = gr.Button(value="Run V3D") | ||
|
||
with gr.Column(): | ||
output_video = gr.Video(value=None, label="Output Orbit Video") | ||
|
||
@run_button.click( | ||
inputs=[ | ||
input_image, | ||
border_ratio_slider, | ||
min_guidance_slider, | ||
max_guidance_slider, | ||
], | ||
outputs=[output_video], | ||
) | ||
def _(image, border_ratio, min_guidance, max_guidance): | ||
change_model_params(model, min_guidance, max_guidance) | ||
return do_sample( | ||
image, | ||
model, | ||
clip_model, | ||
ae_model, | ||
device, | ||
num_frames, | ||
num_steps, | ||
decoding_t, | ||
border_ratio, | ||
False, | ||
rembg_session, | ||
output_folder, | ||
) | ||
|
||
demo.launch( | ||
inbrowser=True, inline=False, server_port=port, share=share, show_error=True | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--port", type=int, default=4321) | ||
parser.add_argument("--device", type=str, default="cuda") | ||
parser.add_argument("--share", action="store_true") | ||
|
||
opt = parser.parse_args() | ||
|
||
launch(opt.device, opt.port, opt.share) |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters