Skip to content

Commit

Permalink
feat(eps): aggiorna le tabelle con le distribuzioni
Browse files Browse the repository at this point in the history
  • Loading branch information
hearot committed Apr 29, 2024
1 parent 64a638a commit 289804f
Show file tree
Hide file tree
Showing 5 changed files with 48 additions and 31 deletions.
Binary file modified Secondo anno/Elementi di probabilità e statistica/main.pdf
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -683,6 +683,7 @@ \subsection{Definizione di valore atteso e teoremi correlati}
\end{lemma}

\begin{theorem}[di convergenza monotona, o di Beppo Levi]
\label{th:convergenza_monotona}
Sia $(X_i)_{i \in \NN}$ una successione di v.a.~reali non negative q.c.~con
$X_i \goesup X$ q.c.~(cioè la successione è crescente e
$X_i(\omega) \to X(\omega)$ $P$-quasi ovunque). Allora $\EE[X_i] \goesup \EE[X]$. \smallskip
Expand All @@ -701,4 +702,19 @@ \subsection{Definizione di valore atteso e teoremi correlati}
Segue la stessa idea di dimostrazione per il teorema nella sua forma per l'integrale di Lebesgue.
\end{theorem}

\subsection{Calcolo del valore atteso}

\begin{proposition}
Sia $X : \Omega \to \RR$ una v.a.~assolutamente continua con densità $f$
e sia $\varphi : \RR \to \RR$ una funzione
boreliana. Allora valgono le seguenti affermazioni:
\begin{enumerate}[(i.)]
\item $\varphi(X)$ è integrabile se e solo se $\int_\RR \abs{\varphi(x)} f(x) \dx$ è finito.
\item se $\varphi(X)$ ammette valore atteso, allora $\EE[\varphi(X)] = \int_\RR \varphi(x) f(x) \dx$.
\end{enumerate}
Il risultato segue considerando in ordine a) le funzioni indicatrici, b) le funzioni semplici,
c) le funzioni non negative e d) le funzioni integrabili, applicando il
\hyperref[th:convergenza_monotona]{Teorema di convergenza monotona}.
\end{proposition}

\end{multicols*}
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,22 @@
\chapter*{Tabella e proprietà delle distribuzioni discrete}
\addcontentsline{toc}{chapter}{Tabella e proprietà delle distribuzioni discrete}

\vskip -0.3in
\vskip -0.45in

\begin{table}[htb]
\label{tab:distr_discrete}
\scalebox{0.74}{
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
Nome distribuzione & Caso di utilizzo & Parametri & Densità discreta & Valore atteso & Momento secondo & Varianza \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. di Bernoulli\\ $X \sim B(\pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}Esperimento con esito\\ di successo ($1$) o\\ insuccesso ($0$).\end{tabular} & $\pp$ -- probabilità di successo. & $P(X=1) = \pp$, $P(X=0) = 1-\pp$ & $\EE[X] = \pp$ & $\EE[X^2] = \pp$ & $\Var(X) = \pp(1-\pp)$ \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. binomiale\\ $X \sim B(n, \pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una serie di $n$ esperimenti\\ col modello delle prove ripetute,\\ $X$ conta il numero di successi.\\ $X$ è in particolare somma di $n$\\ v.a.~i.i.d.~distribuite come $B(\pp)$.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$n$ -- numero di esperimenti\\ $\pp$ -- probabilità di successo\\ dell'$i$-esimo esperimento\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \binom{n}{k}{\pp}^k (1-\pp)^{n-k}$\\ per $0 \leq k \leq n$ e $0$ altrimenti.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\EE[X] = n \pp$\\ (è somma di $n$ Bernoulliane)\end{tabular} & $\EE[X^2] = n \pp + n(n-1)\pp^2$ & \begin{tabular}[c]{@{}l@{}}$\Var(X) = n \pp(1-\pp)$\\ (è somma di $n$\\ Bernoulliane indipendenti)\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. binomiale\\ negativa\\ $X \sim \BinNeg(h, \pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una serie di infiniti esperimenti\\ col modello delle prove ripetute,\\ $X$ conta l'esperimento in cui si\\ ha l'$h$-esimo successo.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$h$ -- numero dei successi da misurare\\ $\pp \in (0, 1)$ -- probabilità di successo\\ dell'$i$-esimo esperimento\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \binom{k-1}{h-1} \pp^h (1-\pp)^{k-h}$\\ laddove definibile e $0$ altrimenti.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\EE[X] = \frac{h}{\pp}$\\ (è somma di $h$ Geometriche)\end{tabular} & $\EE[X^2] = \frac{h(1+h-\pp)}{\pp^2}$ & \begin{tabular}[c]{@{}l@{}}$\Var(X) = \frac{h(1-\pp)}{\pp^2}$ \\ (è somma di $h$\\Geometriche indipendenti)\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. geometrica\\ $X \sim \Geom(\pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una serie di infiniti esperimenti\\ col modello delle prove ripetute,\\ $X$ conta l'esperimento in cui si\\ ha il primo successo. È pari a\\ $\BinNeg(1, \pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\pp \in (0, 1)$ -- probabilità di successo\\ all'$i$-esimo esperimento.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \pp (1-\pp)^{k-1}$ per\\ $k \geq 1$ e $0$ per $k=0$.\end{tabular} & $\EE[X] = \frac{1}{\pp}$ & $\EE[X^2] = \frac{2-\pp}{\pp^2}$ & $\Var(X) = \frac{1-\pp}{\pp^2}$ \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. ipergeometrica\\ $X \sim H(N, N_1, n)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In un'estrazione di $n$ palline in\\ un'urna di $N$ palline, di cui\\ $N_1$ sono rosse, $X$ conta\\ il numero di palline rosse estratte.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$N$ -- numero di palline nell'urna\\ $N_1$ -- numero di palline rosse\\ nell'urna\\ $n$ -- numero di palline estratte\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \frac{\binom{N_1}{k} \binom{N-N_1}{n-k}}{\binom{N}{n}}$\\ laddove definibile e $0$ altrimenti.\end{tabular} & & & \\ \hline
\begin{tabular}[c]{@{}l@{}}Distri.di Poisson\\ (o degli eventi rari)\\ $X \sim \Poisson(\lambda)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una sequenza di $n \gg 1$\\ esperimenti di parametro $\pp \ll 1$\\ con $n \pp \approx \lambda$,\\ $X$ misura il numero di successi.\\ Si può studiare come distribuzione\\ limite della distribuzione binomiale.\end{tabular} & $\lambda$ -- tasso di successo. & $P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$ & $\EE[X] = \lambda$ & $\EE[X^2] = \lambda(\lambda + 1)$ & $\Var(X) = \lambda$ \\ \hline
\end{tabular}}
\scalebox{0.85}{
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Nome distribuzione & Caso di utilizzo & Parametri & Densità discreta & Valore atteso e momenti & Varianza \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. di Bernoulli\\ $X \sim B(\pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}Esperimento con esito\\ di successo ($1$) o\\ insuccesso ($0$).\end{tabular} & $\pp$ -- probabilità di successo. & $P(X=1) = \pp$, $P(X=0) = 1-\pp$ & $\EE[X] = \EE[X^2] = \pp$ & $\Var(X) = \pp(1-\pp)$ \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. binomiale\\ $X \sim B(n, \pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una serie di $n$ esperimenti\\ col modello delle prove ripetute,\\ $X$ conta il numero di successi.\\ $X$ è in particolare somma di $n$\\ v.a.~i.i.d.~distribuite come $B(\pp)$.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$n$ -- numero di esperimenti\\ $\pp$ -- probabilità di successo\\ dell'$i$-esimo esperimento\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \binom{n}{k}{\pp}^k (1-\pp)^{n-k}$\\ per $0 \leq k \leq n$ e $0$ altrimenti.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\EE[X] = n \pp$\\ (è somma di $n$ Bernoulliane) \\ $\EE[X^2] = n \pp + n(n-1)\pp^2$ \end{tabular} & \begin{tabular}[c]{@{}l@{}}$\Var(X) = n \pp(1-\pp)$\\ (è somma di $n$\\ Bernoulliane indipendenti)\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. binomiale\\ negativa\\ $X \sim \BinNeg(h, \pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una serie di infiniti esperimenti\\ col modello delle prove ripetute,\\ $X$ conta l'esperimento in cui si\\ ha l'$h$-esimo successo.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$h$ -- numero dei successi da misurare\\ $\pp \in (0, 1)$ -- probabilità di successo\\ dell'$i$-esimo esperimento\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \binom{k-1}{h-1} \pp^h (1-\pp)^{k-h}$\\ laddove definibile e $0$ altrimenti.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\EE[X] = \frac{h}{\pp}$\\ (è somma di $h$ Geometriche) \\ $\EE[X^2] = \frac{h(1+h-\pp)}{\pp^2}$ \end{tabular} & \begin{tabular}[c]{@{}l@{}}$\Var(X) = \frac{h(1-\pp)}{\pp^2}$ \\ (è somma di $h$\\Geometriche indipendenti)\end{tabular} \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. geometrica\\ $X \sim \Geom(\pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una serie di infiniti esperimenti\\ col modello delle prove ripetute,\\ $X$ conta l'esperimento in cui si\\ ha il primo successo. È pari a\\ $\BinNeg(1, \pp)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\pp \in (0, 1)$ -- probabilità di successo\\ all'$i$-esimo esperimento.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \pp (1-\pp)^{k-1}$ per\\ $k \geq 1$ e $0$ per $k=0$.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$\EE[X] = \frac{1}{\pp}$\\ $\EE[X^2] = \frac{2-\pp}{\pp^2}$\end{tabular} & $\Var(X) = \frac{1-\pp}{\pp^2}$ \\ \hline
\begin{tabular}[c]{@{}l@{}}Distr. ipergeometrica\\ $X \sim H(N, N_1, n)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In un'estrazione di $n$ palline in\\ un'urna di $N$ palline, di cui\\ $N_1$ sono rosse, $X$ conta\\ il numero di palline rosse estratte.\end{tabular} & \begin{tabular}[c]{@{}l@{}}$N$ -- numero di palline nell'urna\\ $N_1$ -- numero di palline rosse\\ nell'urna\\ $n$ -- numero di palline estratte\end{tabular} & \begin{tabular}[c]{@{}l@{}}$P(X=k) = \frac{\binom{N_1}{k} \binom{N-N_1}{n-k}}{\binom{N}{n}}$\\ laddove definibile e $0$ altrimenti.\end{tabular} & & \\ \hline
\begin{tabular}[c]{@{}l@{}}Distri.di Poisson\\ (o degli eventi rari)\\ $X \sim \Poisson(\lambda)$\end{tabular} & \begin{tabular}[c]{@{}l@{}}In una sequenza di $n \gg 1$\\ esperimenti di parametro $\pp \ll 1$\\ con $n \pp \approx \lambda$,\\ $X$ misura il numero di successi.\\ Si può studiare come distribuzione\\ limite della distribuzione binomiale.\end{tabular} & $\lambda$ -- tasso di successo. & $P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$ & \begin{tabular}[c]{@{}l@{}}$\EE[X] = \lambda$\\ $\EE[X^2] = \lambda(\lambda + 1)$\end{tabular} & $\Var(X) = \lambda$ \\ \hline
\end{tabular}
}
\end{table}

Valgono inoltre le seguenti altre proprietà:
Expand Down
Loading

0 comments on commit 289804f

Please sign in to comment.