Copyright (c) 2018-2024 Haven. Portions Copyright (c) 2014-2022 The Monero Project. Portions Copyright (c) 2012-2013 The Cryptonote developers.
- Development resources
- Introduction
- About this project
- Supporting the project
- License
- Contributing
- Compiling Haven from source
- Internationalization
- Using Tor
- Pruning
- Debugging
- Known issues
- Web: havenprotocol.org
- Mail: [email protected]
- GitHub: https://github.com/haven-protocol-org/haven-main
Haven is a private, secure, untraceable, decentralised digital currency based on Monero core. You are your bank, you control your funds, and nobody can trace your transfers unless you allow them to do so.
Privacy: Haven uses a cryptographically sound system to allow you to send and receive funds without your transactions being easily revealed on the blockchain (the ledger of transactions that everyone has). This ensures that your purchases, receipts, and all transfers remain private by default.
Security: Using the power of a distributed peer-to-peer consensus network, every transaction on the network is cryptographically secured. Individual wallets have a 25-word mnemonic seed that is only displayed once and can be written down to backup the wallet. Wallet files should be encrypted with a strong passphrase to ensure they are useless if ever stolen.
Untraceability: By taking advantage of ring signatures, a special property of a certain type of cryptography, Haven is able to ensure that transactions are not only untraceable but have an optional measure of ambiguity that ensures that transactions cannot easily be tied back to an individual user or computer.
Decentralization: The utility of Haven depends on its decentralised peer-to-peer consensus network - anyone should be able to run the haven software, validate the integrity of the blockchain, and participate in all aspects of the haven network using consumer-grade commodity hardware. Decentralization of the haven network is maintained by software development that minimizes the costs of running the haven software and inhibits the proliferation of specialized, non-commodity hardware.
This is the core implementation of Haven. It is open source and completely free to use without restrictions, except for those specified in the license agreement below. There are no restrictions on anyone creating an alternative implementation of Haven that uses the protocol and network in a compatible manner.
As with many development projects, the repository on GitHub is considered to be the "staging" area for the latest changes. Before changes are merged into that branch on the main repository, they are tested by individual developers in their own branches, submitted as a pull request, and then subsequently tested by contributors who focus on testing and code reviews. That having been said, the repository should be carefully considered before using it in a production environment, unless there is a patch in the repository for a particular show-stopping issue you are experiencing. It is generally a better idea to use a tagged release for stability.
Anyone is welcome to contribute to Haven's codebase! If you have a fix or code change, feel free to submit it as a pull request directly to the "master" branch. In cases where the change is relatively small or does not affect other parts of the codebase, it may be merged in immediately by any one of the collaborators. On the other hand, if the change is particularly large or complex, it is expected that it will be discussed at length either well in advance of the pull request being submitted, or even directly on the pull request.
Haven is a 100% community-sponsored endeavor. If you want to join our efforts, the easiest thing you can do is support the project financially. you can send XHV to the Haven donation address via the donate
command (type help
in the command-line wallet for details).
The Haven (XMR) address to donate to is:
47SGs9QAcphWhVjPJP2BFJBMvt3FAxEPsH18W7XoBTEjPsvaxhqWeybjob4RqBWGnH6oQzZP8n4Sj122WcJSqXbTKfWByE1
The Haven (XHV) address to donate to is:
hvxy2DK7Ku79XaAkEzJKqwe87qvnWKTtADESpMBWY9M3Heu5Lt9DLUV17kcM7Hkt6n2AY5oMePHVfPgiU4DteDzj56wopoYvqh
The Bitcoin (BTC) address to donate to is:
bc1qykxdrraygumcguen3yp7vkydjfk8hdjtav0ud5
The Ethereum (ETH) address to donate to is:
0xef2f306997e36d6a00685a9dae42ce023b6a6fad
The Tether (USDT) address to donate to is:
ERC-20 (Ethereum Network)
0xef2f306997e36d6a00685a9dae42ce023b6a6fad
TRC-20 (Tron Network)
TCGbmuc4Hg3jwNr5SPHyqtc2VyqTTXP8Gr
The Verge (XVG) address to donate to is:
DB3QyNgxMy4Z69GLQyGhxonNDdqSZpBVXf
See LICENSE.
If you want to help out, see CONTRIBUTING for a set of guidelines.
The following table summarizes the tools and libraries required to build. A
few of the libraries are also included in this repository (marked as
"Vendored"). By default, the build uses the library installed on the system
and ignores the vendored sources. However, if no library is found installed on
the system, then the vendored source will be built and used. The vendored
sources are also used for statically-linked builds because distribution
packages often include only shared library binaries (.so
) but not static
library archives (.a
).
Dep | Min. version | Vendored | Debian/Ubuntu pkg | Arch pkg | Void pkg | Fedora pkg | Optional | Purpose |
---|---|---|---|---|---|---|---|---|
GCC | 5 | NO | build-essential |
base-devel |
base-devel |
gcc |
NO | |
CMake | 3.5 | NO | cmake |
cmake |
cmake |
cmake |
NO | |
pkg-config | any | NO | pkg-config |
base-devel |
base-devel |
pkgconf |
NO | |
Boost | 1.58 | NO | libboost-all-dev |
boost |
boost-devel |
boost-devel |
NO | C++ libraries |
OpenSSL | basically any | NO | libssl-dev |
openssl |
libressl-devel |
openssl-devel |
NO | sha256 sum |
libzmq | 4.2.0 | NO | libzmq3-dev |
zeromq |
zeromq-devel |
zeromq-devel |
NO | ZeroMQ library |
OpenPGM | ? | NO | libpgm-dev |
libpgm |
openpgm-devel |
NO | For ZeroMQ | |
libnorm[2] | ? | NO | libnorm-dev |
YES | For ZeroMQ | |||
libunbound | 1.4.16 | YES | libunbound-dev |
unbound |
unbound-devel |
unbound-devel |
NO | DNS resolver |
libsodium | ? | NO | libsodium-dev |
libsodium |
libsodium-devel |
libsodium-devel |
NO | cryptography |
libunwind | any | NO | libunwind8-dev |
libunwind |
libunwind-devel |
libunwind-devel |
YES | Stack traces |
liblzma | any | NO | liblzma-dev |
xz |
liblzma-devel |
xz-devel |
YES | For libunwind |
libreadline | 6.3.0 | NO | libreadline6-dev |
readline |
readline-devel |
readline-devel |
YES | Input editing |
expat | 1.1 | NO | libexpat1-dev |
expat |
expat-devel |
expat-devel |
YES | XML parsing |
GTest | 1.5 | YES | libgtest-dev [1] |
gtest |
gtest-devel |
gtest-devel |
YES | Test suite |
ccache | any | NO | ccache |
ccache |
ccache |
ccache |
YES | Compil. cache |
Doxygen | any | NO | doxygen |
doxygen |
doxygen |
doxygen |
YES | Documentation |
Graphviz | any | NO | graphviz |
graphviz |
graphviz |
graphviz |
YES | Documentation |
lrelease | ? | NO | qttools5-dev-tools |
qt5-tools |
qt5-tools |
qt5-linguist |
YES | Translations |
libhidapi | ? | NO | libhidapi-dev |
hidapi |
hidapi-devel |
hidapi-devel |
YES | Hardware wallet |
libusb | ? | NO | libusb-1.0-0-dev |
libusb |
libusb-devel |
libusbx-devel |
YES | Hardware wallet |
libprotobuf | ? | NO | libprotobuf-dev |
protobuf |
protobuf-devel |
protobuf-devel |
YES | Hardware wallet |
protoc | ? | NO | protobuf-compiler |
protobuf |
protobuf |
protobuf-compiler |
YES | Hardware wallet |
libudev | ? | NO | libudev-dev |
systemd |
eudev-libudev-devel |
systemd-devel |
YES | Hardware wallet |
[1] On Debian/Ubuntu libgtest-dev
only includes sources and headers. You must
build the library binary manually. This can be done with the following command sudo apt-get install libgtest-dev && cd /usr/src/gtest && sudo cmake . && sudo make
then:
- on Debian:
sudo mv libg* /usr/lib/
- on Ubuntu:
sudo mv lib/libg* /usr/lib/
[2] libnorm-dev is needed if your zmq library was built with libnorm, and not needed otherwise
Install all dependencies at once on Debian/Ubuntu:
sudo apt update && sudo apt install build-essential cmake pkg-config libssl-dev libzmq3-dev libunbound-dev libsodium-dev libunwind8-dev liblzma-dev libreadline6-dev libexpat1-dev libpgm-dev qttools5-dev-tools libhidapi-dev libusb-1.0-0-dev libprotobuf-dev protobuf-compiler libudev-dev libboost-chrono-dev libboost-date-time-dev libboost-filesystem-dev libboost-locale-dev libboost-program-options-dev libboost-regex-dev libboost-serialization-dev libboost-system-dev libboost-thread-dev python3 ccache doxygen graphviz
Install all dependencies at once on Arch:
sudo pacman -Syu --needed base-devel cmake boost openssl zeromq libpgm unbound libsodium libunwind xz readline expat gtest python3 ccache doxygen graphviz qt5-tools hidapi libusb protobuf systemd
Install all dependencies at once on Fedora:
sudo dnf install gcc gcc-c++ cmake pkgconf boost-devel openssl-devel zeromq-devel openpgm-devel unbound-devel libsodium-devel libunwind-devel xz-devel readline-devel expat-devel gtest-devel ccache doxygen graphviz qt5-linguist hidapi-devel libusbx-devel protobuf-devel protobuf-compiler systemd-devel
Install all dependencies at once on openSUSE:
sudo zypper ref && sudo zypper in cppzmq-devel libboost_chrono-devel libboost_date_time-devel libboost_filesystem-devel libboost_locale-devel libboost_program_options-devel libboost_regex-devel libboost_serialization-devel libboost_system-devel libboost_thread-devel libexpat-devel libminiupnpc-devel libsodium-devel libunwind-devel unbound-devel cmake doxygen ccache fdupes gcc-c++ libevent-devel libopenssl-devel pkgconf-pkg-config readline-devel xz-devel libqt5-qttools-devel patterns-devel-C-C++-devel_C_C++
Install all dependencies at once on macOS with the provided Brewfile:
brew update && brew bundle --file=contrib/brew/Brewfile
FreeBSD 12.1 one-liner required to build dependencies:
pkg install git gmake cmake pkgconf boost-libs libzmq4 libsodium unbound
Clone recursively to pull-in needed submodule(s):
git clone --recursive https://github.com/haven-protocol-org/haven-main
If you already have a repo cloned, initialize and update:
cd haven-main && git submodule init && git submodule update
Note: If there are submodule differences between branches, you may need
to use git submodule sync && git submodule update
after changing branches
to build successfully.
Haven uses the CMake build system and a top-level Makefile that invokes cmake commands as needed.
-
Install the dependencies
-
Change to the root of the source code directory, change to the most recent release branch, and build:
cd haven-main git checkout master make
Optional: If your machine has several cores and enough memory, enable parallel build by running
make -j<number of threads>
instead ofmake
. For this to be worthwhile, the machine should have one core and about 2GB of RAM available per thread.Note: The instructions above will compile the most stable release of the Haven software. If you would like to use and test the most recent software, use
git checkout master
. The master branch may contain updates that are both unstable and incompatible with release software, though testing is always encouraged. -
The resulting executables can be found in
build/release/bin
-
Add
PATH="$PATH:$HOME/haven-main/build/release/bin"
to.profile
-
Run Haven with
havend --detach
-
Optional: build and run the test suite to verify the binaries:
make release-test
NOTE:
core_tests
test may take a few hours to complete. -
Optional: to build binaries suitable for debugging:
make debug
-
Optional: to build statically-linked binaries:
make release-static
Dependencies need to be built with -fPIC. Static libraries usually aren't, so you may have to build them yourself with -fPIC. Refer to their documentation for how to build them.
-
Optional: build documentation in
doc/html
(omitHAVE_DOT=YES
ifgraphviz
is not installed):HAVE_DOT=YES doxygen Doxyfile
-
Optional: use ccache not to rebuild translation units, that haven't really changed. Haven's CMakeLists.txt file automatically handles it
sudo apt install ccache
Tested on a Raspberry Pi Zero with a clean install of minimal Raspbian Stretch (2017-09-07 or later) from https://www.raspberrypi.org/downloads/raspbian/. If you are using Raspian Jessie, please see note in the following section.
-
apt-get update && apt-get upgrade
to install all of the latest software -
Install the dependencies for Haven from the 'Debian' column in the table above.
-
Increase the system swap size:
sudo /etc/init.d/dphys-swapfile stop sudo nano /etc/dphys-swapfile CONF_SWAPSIZE=2048 sudo /etc/init.d/dphys-swapfile start
-
If using an external hard disk without an external power supply, ensure it gets enough power to avoid hardware issues when syncing, by adding the line "max_usb_current=1" to /boot/config.txt
-
Clone Haven and checkout the most recent release version:
git clone https://github.com/haven-protocol-org/haven-main.git cd haven-main git checkout master
-
Build:
USE_SINGLE_BUILDDIR=1 make release
-
Wait 4-6 hours
-
The resulting executables can be found in
build/release/bin
-
Add
export PATH="$PATH:$HOME/haven-main/build/release/bin"
to$HOME/.profile
-
Run
source $HOME/.profile
-
Run Haven with
havend --detach
-
You may wish to reduce the size of the swap file after the build has finished, and delete the boost directory from your home directory
If you are using the older Raspbian Jessie image, compiling Haven is a bit more complicated. The version of Boost available in the Debian Jessie repositories is too old to use with Haven, and thus you must compile a newer version yourself. The following explains the extra steps and has been tested on a Raspberry Pi 2 with a clean install of minimal Raspbian Jessie.
-
As before,
apt-get update && apt-get upgrade
to install all of the latest software, and increase the system swap sizesudo /etc/init.d/dphys-swapfile stop sudo nano /etc/dphys-swapfile CONF_SWAPSIZE=2048 sudo /etc/init.d/dphys-swapfile start
-
Then, install the dependencies for Haven except for
libunwind
andlibboost-all-dev
-
Install the latest version of boost (this may first require invoking
apt-get remove --purge libboost*-dev
to remove a previous version if you're not using a clean install):cd wget https://sourceforge.net/projects/boost/files/boost/1.72.0/boost_1_72_0.tar.bz2 tar xvfo boost_1_72_0.tar.bz2 cd boost_1_72_0 ./bootstrap.sh sudo ./b2
-
Wait ~8 hours
sudo ./bjam cxxflags=-fPIC cflags=-fPIC -a install
-
Wait ~4 hours
-
From here, follow the general Raspberry Pi instructions from the "Clone Haven and checkout most recent release version" step.
Binaries for Windows are built on Windows using the MinGW toolchain within MSYS2 environment. The MSYS2 environment emulates a POSIX system. The toolchain runs within the environment and cross-compiles binaries that can run outside of the environment as a regular Windows application.
Preparing the build environment
-
Download and install the MSYS2 installer, either the 64-bit or the 32-bit package, depending on your system.
-
Open the MSYS shell via the
MSYS2 Shell
shortcut -
Update packages using pacman:
pacman -Syu
-
Exit the MSYS shell using Alt+F4
-
Edit the properties for the
MSYS2 Shell
shortcut changing "msys2_shell.bat" to "msys2_shell.cmd -mingw64" for 64-bit builds or "msys2_shell.cmd -mingw32" for 32-bit builds -
Restart MSYS shell via modified shortcut and update packages again using pacman:
pacman -Syu
-
Install dependencies:
To build for 64-bit Windows:
pacman -S mingw-w64-x86_64-toolchain make mingw-w64-x86_64-cmake mingw-w64-x86_64-boost mingw-w64-x86_64-openssl mingw-w64-x86_64-zeromq mingw-w64-x86_64-libsodium mingw-w64-x86_64-hidapi mingw-w64-x86_64-unbound
To build for 32-bit Windows:
pacman -S mingw-w64-i686-toolchain make mingw-w64-i686-cmake mingw-w64-i686-boost mingw-w64-i686-openssl mingw-w64-i686-zeromq mingw-w64-i686-libsodium mingw-w64-i686-hidapi mingw-w64-i686-unbound
-
Open the MingW shell via
MinGW-w64-Win64 Shell
shortcut on 64-bit Windows orMinGW-w64-Win64 Shell
shortcut on 32-bit Windows. Note that if you are running 64-bit Windows, you will have both 64-bit and 32-bit MinGW shells.
Cloning
-
To git clone, run:
git clone --recursive https://github.com/haven-protocol-org/haven-main.git
Building
-
Change to the cloned directory, run:
cd haven-main
-
If you would like a specific version/tag, do a git checkout for that version. eg. 'v0.18.2.2'. If you don't care about the version and just want binaries from master, skip this step:
git checkout master
-
If you are on a 64-bit system, run:
make release-static-win64
-
If you are on a 32-bit system, run:
make release-static-win32
-
The resulting executables can be found in
build/release/bin
-
Optional: to build Windows binaries suitable for debugging on a 64-bit system, run:
make debug-static-win64
-
Optional: to build Windows binaries suitable for debugging on a 32-bit system, run:
make debug-static-win32
-
The resulting executables can be found in
build/debug/bin
The project can be built from scratch by following instructions for Linux above(but use gmake
instead of make
).
If you are running Haven in a jail, you need to add sysvsem="new"
to your jail configuration, otherwise lmdb will throw the error message: Failed to open lmdb environment: Function not implemented
.
You will need to add a few packages to your system. pkg_add cmake gmake zeromq libiconv boost
.
The doxygen
and graphviz
packages are optional and require the xbase set.
Running the test suite also requires py-requests
package.
Build haven: env DEVELOPER_LOCAL_TOOLS=1 BOOST_ROOT=/usr/local gmake release-static
Note: you may encounter the following error when compiling the latest version of Haven as a normal user:
LLVM ERROR: out of memory
c++: error: unable to execute command: Abort trap (core dumped)
Then you need to increase the data ulimit size to 2GB and try again: ulimit -d 2000000
Check that the dependencies are present: pkg_info -c libexecinfo boost-headers boost-libs protobuf readline libusb1 zeromq git-base pkgconf gmake cmake | more
, and install any that are reported missing, using pkg_add
or from your pkgsrc tree. Readline is optional but worth having.
Third-party dependencies are usually under /usr/pkg/
, but if you have a custom setup, adjust the "/usr/pkg" (below) accordingly.
Clone the haven repository recursively and checkout the most recent release as described above. Then build haven: gmake BOOST_ROOT=/usr/pkg LDFLAGS="-Wl,-R/usr/pkg/lib" release
. The resulting executables can be found in build/NetBSD/[Release version]/Release/bin/
.
The default Solaris linker can't be used, you have to install GNU ld, then run cmake manually with the path to your copy of GNU ld:
mkdir -p build/release
cd build/release
cmake -DCMAKE_LINKER=/path/to/ld -D CMAKE_BUILD_TYPE=Release ../..
cd ../..
Then you can run make as usual.
By default, in either dynamically or statically linked builds, binaries target the specific host processor on which the build happens and are not portable to other processors. Portable binaries can be built using the following targets:
make release-static-linux-x86_64
builds binaries on Linux on x86_64 portable across POSIX systems on x86_64 processorsmake release-static-linux-i686
builds binaries on Linux on x86_64 or i686 portable across POSIX systems on i686 processorsmake release-static-linux-armv8
builds binaries on Linux portable across POSIX systems on armv8 processorsmake release-static-linux-armv7
builds binaries on Linux portable across POSIX systems on armv7 processorsmake release-static-linux-armv6
builds binaries on Linux portable across POSIX systems on armv6 processorsmake release-static-win64
builds binaries on 64-bit Windows portable across 64-bit Windows systemsmake release-static-win32
builds binaries on 64-bit or 32-bit Windows portable across 32-bit Windows systems
You can also cross-compile static binaries on Linux for Windows and macOS with the depends
system.
make depends target=x86_64-linux-gnu
for 64-bit linux binaries.make depends target=x86_64-w64-mingw32
for 64-bit windows binaries.- Requires:
python3 g++-mingw-w64-x86-64 wine1.6 bc
- Requires:
make depends target=x86_64-apple-darwin11
for macOS binaries.- Requires:
cmake imagemagick libcap-dev librsvg2-bin libz-dev libbz2-dev libtiff-tools python-dev
- Requires:
make depends target=i686-linux-gnu
for 32-bit linux binaries.- Requires:
g++-multilib bc
- Requires:
make depends target=i686-w64-mingw32
for 32-bit windows binaries.- Requires:
python3 g++-mingw-w64-i686
- Requires:
make depends target=arm-linux-gnueabihf
for armv7 binaries.- Requires:
g++-arm-linux-gnueabihf
- Requires:
make depends target=aarch64-linux-gnu
for armv8 binaries.- Requires:
g++-aarch64-linux-gnu
- Requires:
make depends target=riscv64-linux-gnu
for RISC V 64 bit binaries.- Requires:
g++-riscv64-linux-gnu
- Requires:
make depends target=x86_64-unknown-freebsd
for freebsd binaries.- Requires:
clang-8
- Requires:
make depends target=arm-linux-android
for 32bit android binariesmake depends target=aarch64-linux-android
for 64bit android binaries
The required packages are the names for each toolchain on apt. Depending on your distro, they may have different names. The depends
system has been tested on Ubuntu 18.04 and 20.04.
Using depends
might also be easier to compile Haven on Windows than using MSYS. Activate Windows Subsystem for Linux (WSL) with a distro (for example Ubuntu), install the apt build-essentials and follow the depends
steps as depicted above.
The produced binaries still link libc dynamically. If the binary is compiled on a current distribution, it might not run on an older distribution with an older installation of libc. Passing -DBACKCOMPAT=ON
to cmake will make sure that the binary will run on systems having at least libc version 2.17.
-
Docker
# Build using all available cores docker build -t haven -f .docker/Dockerfile . # or build using a specific number of cores (reduce RAM requirement) docker build -t haven --build-arg NPROC=1 -f .docker/Dockerfile . # either run in foreground docker run -it -v /haven/chain:/home/haven/.haven -v /haven/wallet:/wallet -p 17750:17750 haven # or in background docker run -it -d -v /haven/chain:/home/haven/.haven -v /haven/wallet:/wallet -p 17750:17750 haven
-
The build needs 3 GB space.
-
Wait one hour or more
Packaging for your favorite distribution would be a welcome contribution!
The build places the binary in bin/
sub-directory within the build directory
from which cmake was invoked (repository root by default). To run in the
foreground:
./bin/havend
To list all available options, run ./bin/havend --help
. Options can be
specified either on the command line or in a configuration file passed by the
--config-file
argument. To specify an option in the configuration file, add
a line with the syntax argumentname=value
, where argumentname
is the name
of the argument without the leading dashes, for example, log-level=1
.
To run in background:
./bin/havend --log-file havend.log --detach
To run as a systemd service, copy
havend.service to /etc/systemd/system/
and
havend.conf to /etc/
. The example
service assumes that the user haven
exists
and its home is the data directory specified in the example
config.
If you're on Mac, you may need to add the --max-concurrency 1
option to
haven-wallet-cli, and possibly havend, if you get crashes refreshing.
See README.i18n.md.
There is a new, still experimental, integration with Tor. The feature allows connecting over IPv4 and Tor simultaneously - IPv4 is used for relaying blocks and relaying transactions received by peers whereas Tor is used solely for relaying transactions received over local RPC. This provides privacy and better protection against surrounding node (sybil) attacks.
While Haven isn't made to integrate with Tor, it can be used wrapped with torsocks, by setting the following configuration parameters and environment variables:
--p2p-bind-ip 127.0.0.1
on the command line orp2p-bind-ip=127.0.0.1
in havend.conf to disable listening for connections on external interfaces.--no-igd
on the command line orno-igd=1
in havend.conf to disable IGD (UPnP port forwarding negotiation), which is pointless with Tor.DNS_PUBLIC=tcp
orDNS_PUBLIC=tcp://x.x.x.x
where x.x.x.x is the IP of the desired DNS server, for DNS requests to go over TCP, so that they are routed through Tor. When IP is not specified, havend uses the default list of servers defined in src/common/dns_utils.cpp.TORSOCKS_ALLOW_INBOUND=1
to tell torsocks to allow havend to bind to interfaces to accept connections from the wallet. On some Linux systems, torsocks allows binding to localhost by default, so setting this variable is only necessary to allow binding to local LAN/VPN interfaces to allow wallets to connect from remote hosts. On other systems, it may be needed for local wallets as well.- Do NOT pass
--detach
when running through torsocks with systemd, (see utils/systemd/havend.service for details). - If you use the wallet with a Tor daemon via the loopback IP (eg, 127.0.0.1:9050),
then use
--untrusted-daemon
unless it is your own hidden service.
Example command line to start havend through Tor:
DNS_PUBLIC=tcp torsocks havend --p2p-bind-ip 127.0.0.1 --no-igd
A helper script is in contrib/tor/haven-over-tor.sh. It assumes Tor is installed already, and runs Tor and Haven with the right configuration.
TAILS ships with a very restrictive set of firewall rules. Therefore, you need to add a rule to allow this connection too, in addition to telling torsocks to allow inbound connections. Full example:
sudo iptables -I OUTPUT 2 -p tcp -d 127.0.0.1 -m tcp --dport 17749 -j ACCEPT
DNS_PUBLIC=tcp torsocks ./havend --p2p-bind-ip 127.0.0.1 --no-igd --rpc-bind-ip 127.0.0.1 \
--data-dir /home/amnesia/Persistent/your/directory/to/the/blockchain
As of April 2022, the full Haven blockchain file is about 35 GB. One can store a pruned blockchain, which is about 20 GB.
A pruned blockchain can only serve part of the historical chain data to other peers, but is otherwise identical in
functionality to the full blockchain.
To use a pruned blockchain, it is best to start the initial sync with --prune-blockchain
. However, it is also possible
to prune an existing blockchain using the haven-blockchain-prune
tool or using the --prune-blockchain
havend
option
with an existing chain. If an existing chain exists, pruning will temporarily require disk space to store both the full
and pruned blockchains.
This section contains general instructions for debugging failed installs or problems encountered with Haven. First, ensure you are running the latest version built from the GitHub repo.
We generally use the tool gdb
(GNU debugger) to provide stack trace functionality, and ulimit
to provide core dumps in builds which crash or segfault.
- To use
gdb
in order to obtain a stack trace for a build that has stalled:
Run the build.
Once it stalls, enter the following command:
gdb /path/to/havend `pidof havend`
Type thread apply all bt
within gdb in order to obtain the stack trace
- If however the core dumps or segfaults:
Enter ulimit -c unlimited
on the command line to enable unlimited filesizes for core dumps
Enter echo core | sudo tee /proc/sys/kernel/core_pattern
to stop cores from being hijacked by other tools
Run the build.
When it terminates with an output along the lines of "Segmentation fault (core dumped)", there should be a core dump file in the same directory as havend. It may be named just core
, or core.xxxx
with numbers appended.
You can now analyse this core dump with gdb
as follows:
gdb /path/to/havend /path/to/dumpfile`
Print the stack trace with bt
- If a program crashed and cores are managed by systemd, the following can also get a stack trace for that crash:
coredumpctl -1 gdb
Type gdb /path/to/havend
Pass command-line options with --args
followed by the relevant arguments
Type run
to run havend
There are two tools available:
Configure Haven with the -D SANITIZE=ON cmake flag, eg:
cd build/debug && cmake -D SANITIZE=ON -D CMAKE_BUILD_TYPE=Debug ../..
You can then run the haven tools normally. Performance will typically halve.
Install valgrind and run as valgrind /path/to/havend
. It will be very slow.
Instructions for debugging suspected blockchain corruption as per @HYC
There is an mdb_stat
command in the LMDB source that can print statistics about the database but it's not routinely built. This can be built with the following command:
cd ~/haven/external/db_drivers/liblmdb && make
The output of mdb_stat -ea <path to blockchain dir>
will indicate inconsistencies in the blocks, block_heights and block_info table.
The output of mdb_dump -s blocks <path to blockchain dir>
and mdb_dump -s block_info <path to blockchain dir>
is useful for indicating whether blocks and block_info contain the same keys.
These records are dumped as hex data, where the first line is the key and the second line is the data.
Because of the nature of the socket-based protocols that drive haven, certain protocol weaknesses are somewhat unavoidable at this time. While these weaknesses can theoretically be fully mitigated, the effort required (the means) may not justify the ends. As such, please consider taking the following precautions if you are a haven node operator:
- Run
havend
on a "secured" machine. If operational security is not your forte, at a very minimum, have a dedicated a computer runninghavend
and do not browse the web, use email clients, or use any other potentially harmful apps on yourhavend
machine. Do not click links or load URL/MUA content on the same machine. Doing so may potentially exploit weaknesses in commands which accept "localhost" and "127.0.0.1". - If you plan on hosting a public "remote" node, start
havend
with--restricted-rpc
. This is a must.
Certain blockchain "features" can be considered "bugs" if misused correctly. Consequently, please consider the following:
- When receiving haven, be aware that it may be locked for an arbitrary time if the sender elected to, preventing you from spending that haven until the lock time expires. You may want to hold off acting upon such a transaction until the unlock time lapses. To get a sense of that time, you can consider the remaining blocktime until unlock as seen in the
show_transfers
command.