-
Notifications
You must be signed in to change notification settings - Fork 168
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adding Action Chunking with Transformers (ACT) to baselines #640
Open
ywchoi02
wants to merge
34
commits into
haosulab:main
Choose a base branch
from
ywchoi02:main
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 9 commits
Commits
Show all changes
34 commits
Select commit
Hold shift + click to select a range
43d027b
Create train.py
ywchoi02 cc0cb60
Create train_rgb.py
ywchoi02 e154fe3
Create evaluate.py
ywchoi02 2e126e7
Create make_env.py
ywchoi02 7abc4cb
Create utils.py
ywchoi02 f48fdc0
Create backbone.py
ywchoi02 aaae4b7
Create detr_vae.py
ywchoi02 07b5741
Create position_encoding.py
ywchoi02 1f89c29
Create transformer.py
ywchoi02 479841f
Update evaluate.py
ywchoi02 bdd1660
Create README.md
ywchoi02 09d5411
Changed to absolute import
ywchoi02 622a36e
Update absolute import
ywchoi02 4932d9b
change to absolute import
ywchoi02 37eb2af
change to absolute import
ywchoi02 e5ebaa4
fix import
ywchoi02 e5e0aeb
fix import
ywchoi02 35979e9
fix import
ywchoi02 04972f3
Create setup.py
ywchoi02 673d453
Merge branch 'haosulab:main' into main
ywchoi02 4add469
Create examples.sh
ywchoi02 ddcfb1b
Merge branch 'haosulab:main' into main
ywchoi02 edeeea5
Update train.py
ywchoi02 492bfbd
Update (vectorized) evaluate.py
ywchoi02 7f5f636
Update examples.sh
ywchoi02 3a954a1
Merge branch 'haosulab:main' into main
ywchoi02 ea902fb
Merge branch 'haosulab:main' into main
ywchoi02 ff53d8c
Update evaluate.py (incorporate visual_data)
ywchoi02 a7989e9
Update backbone.py (for rgbd data)
ywchoi02 d2b3eb6
Update detr_vae.py (for rgbd data)
ywchoi02 881401f
Create train_rgbd.py
ywchoi02 d7b33f0
Delete examples/baselines/act/train_rgb.py
ywchoi02 663fd82
Update examples.sh (include rgbd examples)
ywchoi02 8735baf
Update train_rgbd.py (bug fix)
ywchoi02 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | ||
""" | ||
Backbone modules. | ||
""" | ||
from collections import OrderedDict | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
import torchvision | ||
from torch import nn | ||
from torchvision.models._utils import IntermediateLayerGetter | ||
from typing import Dict, List | ||
|
||
from ..utils import NestedTensor, is_main_process | ||
|
||
from .position_encoding import build_position_encoding | ||
|
||
import IPython | ||
e = IPython.embed | ||
|
||
class FrozenBatchNorm2d(torch.nn.Module): | ||
""" | ||
BatchNorm2d where the batch statistics and the affine parameters are fixed. | ||
|
||
Copy-paste from torchvision.misc.ops with added eps before rqsrt, | ||
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101] | ||
produce nans. | ||
""" | ||
|
||
def __init__(self, n): | ||
super(FrozenBatchNorm2d, self).__init__() | ||
self.register_buffer("weight", torch.ones(n)) | ||
self.register_buffer("bias", torch.zeros(n)) | ||
self.register_buffer("running_mean", torch.zeros(n)) | ||
self.register_buffer("running_var", torch.ones(n)) | ||
|
||
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, | ||
missing_keys, unexpected_keys, error_msgs): | ||
num_batches_tracked_key = prefix + 'num_batches_tracked' | ||
if num_batches_tracked_key in state_dict: | ||
del state_dict[num_batches_tracked_key] | ||
|
||
super(FrozenBatchNorm2d, self)._load_from_state_dict( | ||
state_dict, prefix, local_metadata, strict, | ||
missing_keys, unexpected_keys, error_msgs) | ||
|
||
def forward(self, x): | ||
# move reshapes to the beginning | ||
# to make it fuser-friendly | ||
w = self.weight.reshape(1, -1, 1, 1) | ||
b = self.bias.reshape(1, -1, 1, 1) | ||
rv = self.running_var.reshape(1, -1, 1, 1) | ||
rm = self.running_mean.reshape(1, -1, 1, 1) | ||
eps = 1e-5 | ||
scale = w * (rv + eps).rsqrt() | ||
bias = b - rm * scale | ||
return x * scale + bias | ||
|
||
|
||
class BackboneBase(nn.Module): | ||
|
||
def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool): | ||
super().__init__() | ||
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this? | ||
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name: | ||
# parameter.requires_grad_(False) | ||
if return_interm_layers: | ||
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} | ||
else: | ||
return_layers = {'layer4': "0"} | ||
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) | ||
self.num_channels = num_channels | ||
|
||
def forward(self, tensor): | ||
xs = self.body(tensor) | ||
return xs | ||
# out: Dict[str, NestedTensor] = {} | ||
# for name, x in xs.items(): | ||
# m = tensor_list.mask | ||
# assert m is not None | ||
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] | ||
# out[name] = NestedTensor(x, mask) | ||
# return out | ||
|
||
|
||
class Backbone(BackboneBase): | ||
"""ResNet backbone with frozen BatchNorm.""" | ||
def __init__(self, name: str, | ||
train_backbone: bool, | ||
return_interm_layers: bool, | ||
dilation: bool): | ||
backbone = getattr(torchvision.models, name)( | ||
replace_stride_with_dilation=[False, False, dilation], | ||
pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d) # pretrained # TODO do we want frozen batch_norm?? | ||
num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 | ||
super().__init__(backbone, train_backbone, num_channels, return_interm_layers) | ||
|
||
|
||
class Joiner(nn.Sequential): | ||
def __init__(self, backbone, position_embedding): | ||
super().__init__(backbone, position_embedding) | ||
|
||
def forward(self, tensor_list: NestedTensor): | ||
xs = self[0](tensor_list) | ||
out: List[NestedTensor] = [] | ||
pos = [] | ||
for name, x in xs.items(): | ||
out.append(x) | ||
# position encoding | ||
pos.append(self[1](x).to(x.dtype)) | ||
|
||
return out, pos | ||
|
||
|
||
def build_backbone(args): | ||
position_embedding = build_position_encoding(args) | ||
train_backbone = args.lr_backbone > 0 | ||
return_interm_layers = args.masks | ||
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation) | ||
model = Joiner(backbone, position_embedding) | ||
model.num_channels = backbone.num_channels | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | ||
""" | ||
DETR model and criterion classes. | ||
""" | ||
import torch | ||
from torch import nn | ||
from torch.autograd import Variable | ||
from .transformer import build_transformer, TransformerEncoder, TransformerEncoderLayer | ||
|
||
import numpy as np | ||
|
||
import IPython | ||
e = IPython.embed | ||
|
||
|
||
def reparametrize(mu, logvar): | ||
std = logvar.div(2).exp() | ||
eps = Variable(std.data.new(std.size()).normal_()) | ||
return mu + std * eps | ||
|
||
|
||
def get_sinusoid_encoding_table(n_position, d_hid): | ||
def get_position_angle_vec(position): | ||
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] | ||
|
||
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) | ||
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i | ||
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 | ||
|
||
return torch.FloatTensor(sinusoid_table).unsqueeze(0) | ||
|
||
|
||
class DETRVAE(nn.Module): | ||
""" This is the DETR module that performs object detection """ | ||
def __init__(self, backbones, transformer, encoder, state_dim, action_dim, num_queries): | ||
super().__init__() | ||
self.num_queries = num_queries | ||
self.transformer = transformer | ||
self.encoder = encoder | ||
hidden_dim = transformer.d_model | ||
self.action_head = nn.Linear(hidden_dim, action_dim) | ||
self.query_embed = nn.Embedding(num_queries, hidden_dim) | ||
if backbones is not None: | ||
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1) | ||
self.backbones = nn.ModuleList(backbones) | ||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim) | ||
else: | ||
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim) | ||
self.backbones = None | ||
|
||
# encoder extra parameters | ||
self.latent_dim = 32 # size of latent z | ||
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding | ||
self.encoder_state_proj = nn.Linear(state_dim, hidden_dim) # project state to embedding | ||
self.encoder_action_proj = nn.Linear(action_dim, hidden_dim) # project action to embedding | ||
self.latent_proj = nn.Linear(hidden_dim, self.latent_dim*2) # project hidden state to latent std, var | ||
self.register_buffer('pos_table', get_sinusoid_encoding_table(1+1+num_queries, hidden_dim)) # [CLS], state, actions | ||
|
||
# decoder extra parameters | ||
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding | ||
self.additional_pos_embed = nn.Embedding(2, hidden_dim) # learned position embedding for state and proprio | ||
|
||
def forward(self, obs, actions=None): | ||
is_training = actions is not None | ||
state = obs['state'] if self.backbones is not None else obs | ||
bs = state.shape[0] | ||
|
||
if is_training: | ||
# project CLS token, state sequence, and action sequence to embedding dim | ||
cls_embed = self.cls_embed.weight # (1, hidden_dim) | ||
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim) | ||
state_embed = self.encoder_state_proj(state) # (bs, hidden_dim) | ||
state_embed = torch.unsqueeze(state_embed, axis=1) # (bs, 1, hidden_dim) | ||
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim) | ||
# concat them together to form an input to the CVAE encoder | ||
encoder_input = torch.cat([cls_embed, state_embed, action_embed], axis=1) # (bs, seq+2, hidden_dim) | ||
encoder_input = encoder_input.permute(1, 0, 2) # (seq+2, bs, hidden_dim) | ||
# no masking is applied to all parts of the CVAE encoder input | ||
is_pad = torch.full((bs, encoder_input.shape[0]), False).to(state.device) # False: not a padding | ||
# obtain position embedding | ||
pos_embed = self.pos_table.clone().detach() | ||
pos_embed = pos_embed.permute(1, 0, 2) # (seq+2, 1, hidden_dim) | ||
# query CVAE encoder | ||
encoder_output = self.encoder(encoder_input, pos=pos_embed, src_key_padding_mask=is_pad) | ||
encoder_output = encoder_output[0] # take cls output only | ||
latent_info = self.latent_proj(encoder_output) | ||
mu = latent_info[:, :self.latent_dim] | ||
logvar = latent_info[:, self.latent_dim:] | ||
latent_sample = reparametrize(mu, logvar) | ||
latent_input = self.latent_out_proj(latent_sample) | ||
else: | ||
mu = logvar = None | ||
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(state.device) | ||
latent_input = self.latent_out_proj(latent_sample) | ||
|
||
# CVAE decoder | ||
if self.backbones is not None: | ||
vis_data = obs['rgb'] if "rgb" in obs else obs['rgbd'] | ||
num_cams = vis_data.shape[1] | ||
|
||
# Image observation features and position embeddings | ||
all_cam_features = [] | ||
all_cam_pos = [] | ||
for cam_id in range(num_cams): | ||
features, pos = self.backbones[0](vis_data[:, cam_id]) # HARDCODED | ||
features = features[0] # take the last layer feature # (batch, hidden_dim, H, W) | ||
pos = pos[0] # (1, hidden_dim, H, W) | ||
all_cam_features.append(self.input_proj(features)) | ||
all_cam_pos.append(pos) | ||
|
||
# proprioception features (state) | ||
proprio_input = self.input_proj_robot_state(state) | ||
# fold camera dimension into width dimension | ||
src = torch.cat(all_cam_features, axis=3) # (batch, hidden_dim, 4, 8) | ||
pos = torch.cat(all_cam_pos, axis=3) # (batch, hidden_dim, 4, 8) | ||
hs = self.transformer(src, None, self.query_embed.weight, pos, latent_input, proprio_input, self.additional_pos_embed.weight)[0] # (batch, num_queries, hidden_dim) | ||
else: | ||
state = self.input_proj_robot_state(state) | ||
hs = self.transformer(None, None, self.query_embed.weight, None, latent_input, state, self.additional_pos_embed.weight)[0] | ||
|
||
a_hat = self.action_head(hs) | ||
return a_hat, [mu, logvar] | ||
|
||
|
||
def build_encoder(args): | ||
d_model = args.hidden_dim # 256 | ||
dropout = args.dropout # 0.1 | ||
nhead = args.nheads # 8 | ||
dim_feedforward = args.dim_feedforward # 2048 | ||
num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder | ||
normalize_before = args.pre_norm # False | ||
activation = "relu" | ||
|
||
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, | ||
dropout, activation, normalize_before) | ||
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | ||
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm) | ||
|
||
return encoder |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | ||
""" | ||
Various positional encodings for the transformer. | ||
""" | ||
import math | ||
import torch | ||
from torch import nn | ||
|
||
from ..utils import NestedTensor | ||
|
||
import IPython | ||
e = IPython.embed | ||
|
||
class PositionEmbeddingSine(nn.Module): | ||
""" | ||
This is a more standard version of the position embedding, very similar to the one | ||
used by the Attention is all you need paper, generalized to work on images. | ||
""" | ||
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): | ||
super().__init__() | ||
self.num_pos_feats = num_pos_feats | ||
self.temperature = temperature | ||
self.normalize = normalize | ||
if scale is not None and normalize is False: | ||
raise ValueError("normalize should be True if scale is passed") | ||
if scale is None: | ||
scale = 2 * math.pi | ||
self.scale = scale | ||
|
||
def forward(self, tensor): | ||
x = tensor | ||
# mask = tensor_list.mask | ||
# assert mask is not None | ||
# not_mask = ~mask | ||
|
||
not_mask = torch.ones_like(x[0, [0]]) | ||
y_embed = not_mask.cumsum(1, dtype=torch.float32) | ||
x_embed = not_mask.cumsum(2, dtype=torch.float32) | ||
if self.normalize: | ||
eps = 1e-6 | ||
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale | ||
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale | ||
|
||
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) | ||
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) | ||
|
||
pos_x = x_embed[:, :, :, None] / dim_t | ||
pos_y = y_embed[:, :, :, None] / dim_t | ||
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) | ||
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) | ||
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) | ||
return pos | ||
|
||
|
||
class PositionEmbeddingLearned(nn.Module): | ||
""" | ||
Absolute pos embedding, learned. | ||
""" | ||
def __init__(self, num_pos_feats=256): | ||
super().__init__() | ||
self.row_embed = nn.Embedding(50, num_pos_feats) | ||
self.col_embed = nn.Embedding(50, num_pos_feats) | ||
self.reset_parameters() | ||
|
||
def reset_parameters(self): | ||
nn.init.uniform_(self.row_embed.weight) | ||
nn.init.uniform_(self.col_embed.weight) | ||
|
||
def forward(self, tensor_list: NestedTensor): | ||
x = tensor_list.tensors | ||
h, w = x.shape[-2:] | ||
i = torch.arange(w, device=x.device) | ||
j = torch.arange(h, device=x.device) | ||
x_emb = self.col_embed(i) | ||
y_emb = self.row_embed(j) | ||
pos = torch.cat([ | ||
x_emb.unsqueeze(0).repeat(h, 1, 1), | ||
y_emb.unsqueeze(1).repeat(1, w, 1), | ||
], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) | ||
return pos | ||
|
||
|
||
def build_position_encoding(args): | ||
N_steps = args.hidden_dim // 2 | ||
if args.position_embedding in ('v2', 'sine'): | ||
# TODO find a better way of exposing other arguments | ||
position_embedding = PositionEmbeddingSine(N_steps, normalize=True) | ||
elif args.position_embedding in ('v3', 'learned'): | ||
position_embedding = PositionEmbeddingLearned(N_steps) | ||
else: | ||
raise ValueError(f"not supported {args.position_embedding}") | ||
|
||
return position_embedding |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
use absolute imports when possible, it is just the style choice this repo uses.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I changed them to absolute imports, but I'm not sure if they are correct. please let me know if they need to be fixed. I also added a README file.