Skip to content

hamedhaghighi/CoLiGen

Repository files navigation

📃 A Unified Generative Framework for Realistic Lidar Simulation in Autonomous Driving Systems

This repository mainly contains the Semantic-CARLA dataset and the PyTorch implementation of the CoLiGen model explained in our paper.

drawing

drawing

📑 Table of Contents

⚙️ Installation

Dependencies

  • Create a conda environment and activate it.

    conda create --name coligen python=3.6
    
    conda activate coligen
    
  • Install PyTorch following official instructions

The code has been tested on Ubuntu 18.04 with CUDA 12.1 and Pytorch 1.8.1.

  • Install other Python packages listed in requirements.txt
    pip install -r requirements.txt
    

Dataset

🚆 Training

  • Set the dataset parameters for the real dataset of your choice, e.g. kitti, in the configs/dataset_cfg/[DATASET_NAME]_cfg.yaml file. You also need to set the parameters of the simulated Semantic-CARLA dataset in configs/dataset_cfg/carla_cfg.yaml.

  • Set the training parameters for the image-to-image translation model of your choice, e.g. cut, in the configs/train_cfg/[MODEL_NAME].yaml file.

  • Run the training code using:

python train.py --cfg configs/train_cfg/[MODEL_NAME].yaml 

The log of the training, including tensorboard plots and the model weights are saved in checkpoints/[EXP_NAME].

🧪 Testing & Visualisation

  • To test the model for calculating evaluation metrics including 'pixelAcc' on the test set, run:
python train.py --cfg checkpoints/[EXP_NAME]/[MODEL_NAME].yaml --test
  • To visualise the outputs of the trained model in the image-based and point cloud representations, run:
python log_output.py --cfg checkpoints/[EXP_NAME]/[MODEL_NAME].yaml --ref_dataset_name [DATASET_NAME]

🔨 Rangenet++ Experiments

  • To reproduce the experiments regarding the training of the rangenet++ model, first, create the dataset synthesised by the model:
python infer_dataset.py --cfg checkpoints/[EXP_NAME]/[MODEL_NAME].yaml --data_folder [DATASET_DIR]
  • Change your current directory to rangenet/tasks/semantic/.

  • Then, set the rangnet++ backbone parameters in config/arch/[BACKBONE].yaml.

  • set the training dataset's label parameters in config/[DATASET_NAME].yaml.

  • Finally, run:

python train.py --dataset [DATASET_DIR] -a config/arch/[BACKBONE].yaml -dc config/labels/[DATASET_NAME].yaml

📚 Acknowledgements

  • CUT, Unet, and CycleGAN Implementation from taesungp

  • GcGAN implementation from hufu6371

  • Raydrop Synthesis implementation from kazuto1011

  • Rangenet++ implementation from PRBonn

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published