Skip to content

A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

License

Notifications You must be signed in to change notification settings

gujun720/handson-ml2

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning Notebooks

This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code and solutions to the exercises in the second edition of my O'Reilly book Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow:

Note: If you are looking for the first edition notebooks, check out ageron/handson-ml.

Quick Start

Want to play with these notebooks without having to install anything?

Use any of the following services.

WARNING: Please be aware that these services provide temporary environments: anything you do will be deleted after a while, so make sure you save anything you care about.

  • Open this repository in Binder:

    • Note: Most of the time, Binder starts up quickly and works great, but when handson-ml2 is updated, Binder creates a new environment from scratch, and this can take quite some time.
  • Or open it in Deepnote:

  • Or open it in Colaboratory:

    • Note: Colab environments only contain the notebooks you open, they do not clone the rest of the project, so you need to do it yourself by running !git clone https://github.com/ageron/handson-ml2 and !mv handson-ml2/* /content to have access to other files in this project (such as datasets and images). Moreover, Colab does not come with the latest libraries, so you need to run !python3 -m pip install -U -r requirements.txt then restart the environment (but do not reset it!). If you open multiple notebooks from this project, you only need to do this once (as long as you do not reset the runtimes).

Just want to quickly look at some notebooks, without executing any code?

Browse this repository using jupyter.org's notebook viewer:

Note: github.com's notebook viewer also works but it is slower and the math equations are not always displayed correctly.

Want to install this project on your own machine?

If you have a working Python 3.5+ environment and git is installed, then an easy way to install this project and its dependencies is using pip. Open a terminal and run the following commands (do not type the $ signs, they just indicate that this is a terminal command):

$ git clone https://github.com/ageron/handson-ml2.git
$ cd handson-ml2
$ python3 -m pip install --user --upgrade pip setuptools
$ # Read `requirements.txt` if you want to use a GPU.
$ python3 -m pip install --user --upgrade -r requirements.txt
$ jupyter notebook

If you need more detailed installation instructions, or you want to use Anaconda, read the detailed installation instructions.

Contributors

I would like to thank everyone who contributed to this project, either by providing useful feedback, filing issues or submitting Pull Requests. Special thanks go to Haesun Park who helped on some of the exercise solutions, and to Steven Bunkley and Ziembla who created the docker directory.

About

A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%