Skip to content

Commit

Permalink
minor fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
gucio321 committed Nov 30, 2023
1 parent e89881d commit 1ee9ba0
Show file tree
Hide file tree
Showing 4 changed files with 4 additions and 4 deletions.
2 changes: 1 addition & 1 deletion assets/notes/algebra/algebra_2023.11.14.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,6 +103,6 @@ $$
```{admonition} Twierdzenie o N-Bazach
załóżmy że $B~B'~i~B''$ to bazy przestrzenii V.
- $P_{B' \to B} = (P_{B \to B'})^{-1}
- $P_{B' \to B} = (P_{B \to B'})^{-1}$
- $P_{B \to B''} = P_{B \to B'} * P_{B' \to B''}$
```
2 changes: 1 addition & 1 deletion assets/notes/matematyka/matematyka_2023.10.15.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ $$
$$
dla~a > 1\\
lim_{x \to 0} a^x = 1\\
forall n in \mathbb{N} ~a^{\frac{1}{n+1}} < a^x < a^{\frac{1}{n}}
\forall n \in \mathbb{N} ~a^{\frac{1}{n+1}} < a^x < a^{\frac{1}{n}}
$$

-
Expand Down
2 changes: 1 addition & 1 deletion assets/notes/matematyka/matematyka_2023.10.30.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ jeżeli $\forall x in I \exists f'(x)\quad f' : X \to \mathbb{R}$
| $y = \sqrt{x}$ | $\frac{f(x+h) - f(x)}{h} = \frac{x + h - x}{h(\sqrt{x+h} + \sqrt{x})} \to \frac{1}{2 \sqrt{x}}$ |
| $y = x^n$ | $\frac{f(x+h) - f(x)}{h} =\frac{(x+h)^n - x^n}{h} = n * x^{n-1}$ |
| $y = sin(x)$ [więcej](#pochodne-funkcji-trygonometrycznych) | $y' = cos(x)$ |
| $y = arctg(x)$ | $\rac{1}{x^2+1} |
| $y = arctg(x)$ | $\frac{1}{x^2+1}$ |

**[Zaawansowany Kalkulator Pochodnych](https://mathdf.com/der/pl/)**

Expand Down
2 changes: 1 addition & 1 deletion assets/notes/matematyka/matematyka_2023.11.20.md
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,6 @@ Prosta o równaniu $y = ax+b$ jest asymptotą ukośną, jeśli
$f(x)-ax-b \to 0~dla~x\to \infty$
```

Prosta o równaniu $y=ax+b$ jest asymptotą ukośną funkcji f $Rightleftarrow$
Prosta o równaniu $y=ax+b$ jest asymptotą ukośną funkcji f $\Leftrightarrow$
$\exists lim_{x \to \infty} \frac{f(x)}{x} = a \land$
$\exists lim_{x \to \infty} f(x)-ax = b$

0 comments on commit 1ee9ba0

Please sign in to comment.