Skip to content

Commit

Permalink
Merge pull request #366 from grycap/dev-srisco
Browse files Browse the repository at this point in the history
OSCAR2 integration & mask-detector-workflow example
  • Loading branch information
srisco authored Oct 27, 2020
2 parents d486993 + d36cafd commit 207ec15
Show file tree
Hide file tree
Showing 25 changed files with 1,445 additions and 52 deletions.
16 changes: 16 additions & 0 deletions examples/mask-detector-workflow/blurry-faces.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
#!/bin/bash

VIDEO_NAME=`basename "$INPUT_FILE_PATH"`
SUBFOLDER_NAME=`echo "$VIDEO_NAME" | cut -f 1 -d '.'`
OUTPUT_SUBFOLDER="$TMP_OUTPUT_DIR/$SUBFOLDER_NAME"

mkdir "$OUTPUT_SUBFOLDER"

echo "SCRIPT: Analyzing file '$INPUT_FILE_PATH', saving the output images in '$OUTPUT_SUBFOLDER'"

ffmpeg -i "$INPUT_FILE_PATH" -vf fps=12/60 "$OUTPUT_SUBFOLDER/img%d.jpg"

for IMAGE in "$OUTPUT_SUBFOLDER"/*
do
python auto_blur_image.py -i "$IMAGE" -o "$IMAGE"
done
15 changes: 15 additions & 0 deletions examples/mask-detector-workflow/blurry-faces/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
FROM python:slim-buster

RUN pip install --no-cache-dir opencv-python numpy tensorflow && \
rm -rf /root/.cache/pip/* && \
rm -rf /tmp/*

RUN apt update && \
apt install -y --no-install-recommends ffmpeg && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

COPY . /opt/blurry-faces

WORKDIR /opt/blurry-faces/src

64 changes: 64 additions & 0 deletions examples/mask-detector-workflow/blurry-faces/src/DetectorAPI.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import tensorflow as tf
import numpy as np
import time

class DetectorAPI:
def __init__(self, path_to_ckpt):
self.path_to_ckpt = path_to_ckpt

self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.io.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

self.default_graph = self.detection_graph.as_default()
self.sess = tf.compat.v1.Session(graph=self.detection_graph)

# Definite input and output Tensors for detection_graph
self.image_tensor = self.detection_graph.get_tensor_by_name(
'image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
self.detection_boxes = self.detection_graph.get_tensor_by_name(
'detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
self.detection_scores = self.detection_graph.get_tensor_by_name(
'detection_scores:0')
self.detection_classes = self.detection_graph.get_tensor_by_name(
'detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name(
'num_detections:0')

def processFrame(self, image):
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image, axis=0)
# Actual detection.
start_time = time.time()
(boxes, scores, classes,
num) = self.sess.run([
self.detection_boxes, self.detection_scores,
self.detection_classes, self.num_detections
],
feed_dict={self.image_tensor: image_np_expanded})
end_time = time.time()

print("Elapsed Time:", end_time - start_time)

im_height, im_width, _ = image.shape
boxes_list = [None for i in range(boxes.shape[1])]
for i in range(boxes.shape[1]):
boxes_list[i] = (int(boxes[0, i, 1] * im_width),
int(boxes[0, i, 0] * im_height),
int(boxes[0, i, 3] * im_width),
int(boxes[0, i, 2] * im_height))

return boxes_list, scores[0].tolist(), [
int(x) for x in classes[0].tolist()
], int(num[0])

def close(self):
self.sess.close()
self.default_graph.close()
104 changes: 104 additions & 0 deletions examples/mask-detector-workflow/blurry-faces/src/auto_blur_image.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
# author: Asmaa Mirkhan ~ 2019

import os
import argparse
import cv2 as cv
from DetectorAPI import DetectorAPI

def blurBoxes(image, boxes):
"""
Argument:
image -- the image that will be edited as a matrix
boxes -- list of boxes that will be blurred, each box must be int the format (x_top_left, y_top_left, x_bottom_right, y_bottom_right)
Returns:
image -- the blurred image as a matrix
"""

for box in boxes:
# unpack each box
x1, y1, x2, y2 = [d for d in box]

# crop the image due to the current box
sub = image[y1:y2, x1:x2]

# apply GaussianBlur on cropped area
blur = cv.blur(sub, (10, 10))

# paste blurred image on the original image
image[y1:y2, x1:x2] = blur

return image


def main(args):
# assign model path and threshold
model_path = args.model_path
threshold = args.threshold

# create detection object
odapi = DetectorAPI(path_to_ckpt=model_path)

# open image
image = cv.imread(args.input_image)

# real face detection
boxes, scores, classes, num = odapi.processFrame(image)

# filter boxes due to threshold
# boxes are in (x_top_left, y_top_left, x_bottom_right, y_bottom_right) format
boxes = [boxes[i] for i in range(0, num) if scores[i] > threshold]

# apply blurring
image = blurBoxes(image, boxes)

# # show image
# cv.imshow('blurred', image)

# if image will be saved then save it
if args.output_image:
cv.imwrite(args.output_image, image)
print('Image has been saved successfully at', args.output_image,
'path')
else:
cv.imshow('blurred', image)
# when any key has been pressed then close window and stop the program
cv.waitKey(0)
cv.destroyAllWindows()


if __name__ == "__main__":
# creating argument parser
parser = argparse.ArgumentParser(description='Image blurring parameters')

# adding arguments
parser.add_argument('-i',
'--input_image',
help='Path to your image',
type=str,
required=True)
parser.add_argument('-m',
'--model_path',
default='/opt/blurry-faces/face_model/face.pb',
help='Path to .pb model',
type=str)
parser.add_argument('-o',
'--output_image',
help='Output file path',
type=str)
parser.add_argument('-t',
'--threshold',
help='Face detection confidence',
default=0.7,
type=float)
args = parser.parse_args()
print(args)
# if input image path is invalid then stop
assert os.path.isfile(args.input_image), 'Invalid input file'

# if output directory is invalid then stop
if args.output_image:
assert os.path.isdir(os.path.dirname(
args.output_image)), 'No such directory'

main(args)
125 changes: 125 additions & 0 deletions examples/mask-detector-workflow/blurry-faces/src/auto_blur_video.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,125 @@
# author: Asmaa Mirkhan ~ 2019

import os
import argparse
import cv2 as cv
from DetectorAPI import DetectorAPI

def blurBoxes(image, boxes):
"""
Argument:
image -- the image that will be edited as a matrix
boxes -- list of boxes that will be blurred, each box must be int the format (x_top_left, y_top_left, x_bottom_right, y_bottom_right)
Returns:
image -- the blurred image as a matrix
"""

for box in boxes:
# unpack each box
x1, y1, x2, y2 = [d for d in box]

# crop the image due to the current box
sub = image[y1:y2, x1:x2]

# apply GaussianBlur on cropped area
blur = cv.blur(sub, (25, 25))

# paste blurred image on the original image
image[y1:y2, x1:x2] = blur

return image


def main(args):
# assign model path and threshold
model_path = args.model_path
threshold = args.threshold

# create detection object
odapi = DetectorAPI(path_to_ckpt=model_path)

# open video
capture = cv.VideoCapture(args.input_video)

# video width = capture.get(3)
# video height = capture.get(4)
# video fps = capture.get(5)

if args.output_video:
fourcc = cv.VideoWriter_fourcc(*'mp4v')
output = cv.VideoWriter(args.output_video, fourcc,
20.0, (int(capture.get(3)), int(capture.get(4))))

frame_counter = 0
while True:
# read frame by frame
r, frame = capture.read()
frame_counter += 1

# the end of the video?
if frame is None:
break

key = cv.waitKey(1)
if key & 0xFF == ord('q'):
break
# real face detection
boxes, scores, classes, num = odapi.processFrame(frame)

# filter boxes due to threshold
# boxes are in (x_top_left, y_top_left, x_bottom_right, y_bottom_right) format
boxes = [boxes[i] for i in range(0, num) if scores[i] > threshold]

# apply blurring
frame = blurBoxes(frame, boxes)

# show image
cv.imshow('blurred', frame)

# if image will be saved then save it
if args.output_video:
output.write(frame)
print('Blurred video has been saved successfully at',
args.output_video, 'path')

# when any key has been pressed then close window and stop the program

cv.destroyAllWindows()


if __name__ == "__main__":
# creating argument parser
parser = argparse.ArgumentParser(description='Image blurring parameters')

# adding arguments
parser.add_argument('-i',
'--input_video',
help='Path to your video',
type=str,
required=True)
parser.add_argument('-m',
'--model_path',
help='Path to .pb model',
type=str,
required=True)
parser.add_argument('-o',
'--output_video',
help='Output file path',
type=str)
parser.add_argument('-t',
'--threshold',
help='Face detection confidence',
default=0.7,
type=float)
args = parser.parse_args()
print(args)
# if input image path is invalid then stop
assert os.path.isfile(args.input_video), 'Invalid input file'

# if output directory is invalid then stop
if args.output_video:
assert os.path.isdir(os.path.dirname(
args.output_video)), 'No such directory'

main(args)
Loading

0 comments on commit 207ec15

Please sign in to comment.