-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
3e97b3b
commit b1fd9db
Showing
8 changed files
with
283 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
|
||
struct BlockFEOperator{NB,SB,P} <: FEOperator | ||
global_op :: FEOperator | ||
block_ops :: Matrix{<:Union{<:FEOperator,Missing,Nothing}} | ||
is_nonlinear :: Matrix{Bool} | ||
end | ||
|
||
const BlockFESpaceTypes{NB,SB,P} = Union{<:MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}},<:GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}} | ||
|
||
function BlockFEOperator( | ||
res::Matrix{<:Union{<:Function,Missing,Nothing}}, | ||
jac::Matrix{<:Union{<:Function,Missing,Nothing}}, | ||
trial::BlockFESpaceTypes, | ||
test::BlockFESpaceTypes; | ||
kwargs... | ||
) | ||
assem = SparseMatrixAssembler(test,trial) | ||
return BlockFEOperator(res,jac,trial,test,assem) | ||
end | ||
|
||
function BlockFEOperator( | ||
res::Matrix{<:Union{<:Function,Missing,Nothing}}, | ||
jac::Matrix{<:Union{<:Function,Missing,Nothing}}, | ||
trial::BlockFESpaceTypes{NB,SB,P}, | ||
test::BlockFESpaceTypes{NB,SB,P}, | ||
assem::MultiField.BlockSparseMatrixAssembler{NB,NV,SB,P}; | ||
is_nonlinear::Matrix{Bool}=fill(true,(NB,NB)) | ||
) where {NB,NV,SB,P} | ||
@check size(res,1) == size(jac,1) == NB | ||
@check size(res,2) == size(jac,2) == NB | ||
|
||
global_res = residual_from_blocks(NB,SB,P,res) | ||
global_jac = jacobian_from_blocks(NB,SB,P,jac) | ||
global_op = FEOperator(global_res,global_jac,trial,test,assem) | ||
|
||
trial_blocks = blocks(trial) | ||
test_blocks = blocks(test) | ||
assem_blocks = blocks(assem) | ||
block_ops = map(CartesianIndices(res)) do I | ||
if !ismissing(res[I]) && !isnothing(res[I]) | ||
FEOperator(res[I],jac[I],test_blocks[I[1]],trial_blocks[I[2]],assem_blocks[I]) | ||
end | ||
end | ||
return BlockFEOperator{NB,SB,P}(global_op,block_ops,is_nonlinear) | ||
end | ||
|
||
# BlockArrays API | ||
|
||
BlockArrays.blocks(op::BlockFEOperator) = op.block_ops | ||
|
||
# FEOperator API | ||
|
||
FESpaces.get_test(op::BlockFEOperator) = get_test(op.global_op) | ||
FESpaces.get_trial(op::BlockFEOperator) = get_trial(op.global_op) | ||
Algebra.allocate_residual(op::BlockFEOperator,u) = allocate_residual(op.global_op,u) | ||
Algebra.residual(op::BlockFEOperator,u) = residual(op.global_op,u) | ||
Algebra.allocate_jacobian(op::BlockFEOperator,u) = allocate_jacobian(op.global_op,u) | ||
Algebra.jacobian(op::BlockFEOperator,u) = jacobian(op.global_op,u) | ||
Algebra.residual!(b::AbstractVector,op::BlockFEOperator,u) = residual!(b,op.global_op,u) | ||
|
||
function Algebra.jacobian!(A::AbstractBlockMatrix,op::BlockFEOperator{NB},u) where NB | ||
map(blocks(A),blocks(op),op.is_nonlinear) do A,op,nl | ||
if nl | ||
residual!(A,op,u) | ||
end | ||
end | ||
return A | ||
end | ||
|
||
# Private methods | ||
|
||
function residual_from_blocks(NB,SB,P,block_residuals) | ||
function res(u,v) | ||
block_ranges = MultiField.get_block_ranges(NB,SB,P) | ||
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]), block_ranges) | ||
block_v = map(r -> (length(r) == 1) ? v[r[1]] : Tuple(v[r]), block_ranges) | ||
block_contrs = map(CartesianIndices(block_residuals)) do I | ||
if !ismissing(block_residuals[I]) && !isnothing(block_residuals[I]) | ||
block_residuals[I](block_u[I[2]],block_v[I[1]]) | ||
end | ||
end | ||
return add_block_contribs(block_contrs) | ||
end | ||
return res | ||
end | ||
|
||
function jacobian_from_blocks(NB,SB,P,block_jacobians) | ||
function jac(u,du,dv) | ||
block_ranges = MultiField.get_block_ranges(NB,SB,P) | ||
block_u = map(r -> (length(r) == 1) ? u[r[1]] : Tuple(u[r]) , block_ranges) | ||
block_du = map(r -> (length(r) == 1) ? du[r[1]] : Tuple(du[r]), block_ranges) | ||
block_dv = map(r -> (length(r) == 1) ? dv[r[1]] : Tuple(dv[r]), block_ranges) | ||
block_contrs = map(CartesianIndices(block_jacobians)) do I | ||
if !ismissing(block_jacobians[I]) && !isnothing(block_jacobians[I]) | ||
block_jacobians[I](block_u[I[2]],block_du[I[2]],block_dv[I[1]]) | ||
end | ||
end | ||
return add_block_contribs(block_contrs) | ||
end | ||
return jac | ||
end | ||
|
||
function add_block_contribs(contrs) | ||
c = contrs[1] | ||
for ci in contrs[2:end] | ||
if !ismissing(ci) && !isnothing(ci) | ||
c = c + ci | ||
end | ||
end | ||
return c | ||
end | ||
|
||
function BlockArrays.blocks(a::MultiField.BlockSparseMatrixAssembler) | ||
return a.block_assemblers | ||
end | ||
|
||
function BlockArrays.blocks(f::MultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P} | ||
block_ranges = MultiField.get_block_ranges(NB,SB,P) | ||
block_spaces = map(block_ranges) do range | ||
(length(range) == 1) ? f[range[1]] : MultiFieldFESpace(f[range]) | ||
end | ||
return block_spaces | ||
end | ||
|
||
function BlockArrays.blocks(f::GridapDistributed.DistributedMultiFieldFESpace{<:BlockMultiFieldStyle{NB,SB,P}}) where {NB,SB,P} | ||
block_gids = blocks(get_free_dof_ids(f)) | ||
|
||
block_ranges = MultiField.get_block_ranges(NB,SB,P) | ||
block_spaces = map(block_ranges,block_gids) do range, gids | ||
if (length(range) == 1) | ||
space = f[range[1]] | ||
else | ||
global_sf_spaces = f[range] | ||
local_sf_spaces = GridapDistributed.to_parray_of_arrays(map(local_views,global_sf_spaces)) | ||
local_mf_spaces = map(MultiFieldFESpace,local_sf_spaces) | ||
vector_type = GridapDistributed._find_vector_type(local_mf_spaces,gids) | ||
space = MultiFieldFESpace(global_sf_spaces,local_mf_spaces,gids,vector_type) | ||
end | ||
space | ||
end | ||
return block_spaces | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
using BlockArrays, LinearAlgebra | ||
using Gridap, Gridap.MultiField, Gridap.Algebra | ||
using PartitionedArrays, GridapDistributed | ||
using GridapSolvers | ||
|
||
np = (2,2) | ||
ranks = with_debug() do distribute | ||
distribute(LinearIndices((prod(np),))) | ||
end | ||
|
||
model = CartesianDiscreteModel(ranks,np,(0,1,0,1),(8,8)) | ||
|
||
reffe = ReferenceFE(lagrangian,Float64,1) | ||
V = FESpace(model,reffe) | ||
|
||
mfs = BlockMultiFieldStyle() | ||
Y = MultiFieldFESpace([V,V];style=mfs) | ||
|
||
Ω = Triangulation(model) | ||
dΩ = Measure(Ω,4) | ||
|
||
sol(x) = sum(x) | ||
a((u1,u2),(v1,v2)) = ∫(u1⋅v1 + u2⋅v2)*dΩ | ||
l((v1,v2)) = ∫(sol⋅v1 - sol⋅v2)*dΩ | ||
|
||
op = AffineFEOperator(a,l,Y,Y) | ||
A, b = get_matrix(op), get_vector(op); | ||
|
||
|
||
# 1) From system blocks | ||
s1 = BlockDiagonalSolver([LUSolver(),LUSolver()]) | ||
ss1 = symbolic_setup(s1,A) | ||
ns1 = numerical_setup(ss1,A) | ||
numerical_setup!(ns1,A) | ||
|
||
x1 = allocate_in_domain(A); fill!(x1,0.0) | ||
solve!(x1,ns1,b) | ||
|
||
# 2) From matrix blocks | ||
s2 = BlockDiagonalSolver([A[Block(1,1)],A[Block(2,2)]],[LUSolver(),LUSolver()]) | ||
ss2 = symbolic_setup(s2,A) | ||
ns2 = numerical_setup(ss2,A) | ||
numerical_setup!(ns2,A) | ||
|
||
x2 = allocate_in_domain(A); fill!(x2,0.0) | ||
solve!(x2,ns2,b) | ||
|
||
# 3) From weakform blocks | ||
aii = (u,v) -> ∫(u⋅v)*dΩ | ||
s3 = BlockDiagonalSolver([aii,aii],[V,V],[V,V],[LUSolver(),LUSolver()]) | ||
ss3 = symbolic_setup(s3,A) | ||
ns3 = numerical_setup(ss3,A) | ||
numerical_setup!(ns3,A) | ||
|
||
x3 = allocate_in_domain(A); fill!(x3,0.0) | ||
solve!(x3,ns3,b) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
using Test | ||
using BlockArrays, LinearAlgebra | ||
using Gridap, Gridap.MultiField, Gridap.Algebra | ||
using PartitionedArrays, GridapDistributed | ||
using GridapSolvers, GridapSolvers.BlockSolvers | ||
|
||
function same_block_array(A,B) | ||
map(blocks(A),blocks(B)) do A, B | ||
t = map(partition(A),partition(B)) do A, B | ||
A ≈ B | ||
end | ||
reduce(&,t) | ||
end |> all | ||
end | ||
|
||
np = (2,2) | ||
ranks = with_debug() do distribute | ||
distribute(LinearIndices((prod(np),))) | ||
end | ||
|
||
model = CartesianDiscreteModel(ranks,np,(0,1,0,1),(8,8)) | ||
|
||
reffe = ReferenceFE(lagrangian,Float64,1) | ||
V = FESpace(model,reffe) | ||
|
||
mfs = BlockMultiFieldStyle() | ||
Y = MultiFieldFESpace([V,V];style=mfs) | ||
|
||
Ω = Triangulation(model) | ||
dΩ = Measure(Ω,4) | ||
|
||
u0 = zero(Y) | ||
sol(x) = sum(x) | ||
|
||
# Reference operator | ||
a_ref((u1,u2),(v1,v2)) = ∫(u1⋅v1 + u2⋅v2)*dΩ | ||
l_ref((v1,v2)) = ∫(sol⋅v1 + sol⋅v2)*dΩ | ||
res_ref(u,v) = a_ref(u,v) - l_ref(v) | ||
jac_ref(u,du,dv) = a_ref(du,dv) | ||
op_ref = FEOperator(res_ref,jac_ref,Y,Y) | ||
A_ref = jacobian(op_ref,u0) | ||
b_ref = residual(op_ref,u0) | ||
|
||
# Block operator | ||
a(u,v) = ∫(u⋅v)*dΩ | ||
l(v) = ∫(sol⋅v)*dΩ | ||
res(u,v) = a(u,v) - l(v) | ||
jac(u,du,dv) = a(du,dv) | ||
|
||
res_blocks = collect(reshape([res,missing,missing,res],(2,2))) | ||
jac_blocks = collect(reshape([jac,missing,missing,jac],(2,2))) | ||
op = BlockFEOperator(res_blocks,jac_blocks,Y,Y) | ||
A = jacobian(op,u0) | ||
b = residual(op,u0) | ||
|
||
@test same_block_array(A,A_ref) | ||
@test same_block_array(b,b_ref) |