Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bugfix: numerical_setup! for PETScLinearSolver #104

Draft
wants to merge 5 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions src/PETScArrays.jl
Original file line number Diff line number Diff line change
Expand Up @@ -306,6 +306,13 @@ function Base.copy(a::PETScMatrix)
Init(v)
end

function Base.copy!(a::PETScMatrix,b::PETScMatrix)
if a !== b
@check_error_code PETSC.MatCopy(b.mat[],a.mat[],PETSC.SAME_NONZERO_PATTERN)
end
a
end

function Base.copy!(a::PETScMatrix,b::AbstractMatrix)
_copy!(a.mat[],b)
end
Expand Down Expand Up @@ -363,9 +370,6 @@ function _copy!(petscmat::Mat,mat::AbstractSparseMatrix)
@check_error_code PETSC.MatAssemblyEnd(petscmat, PETSC.MAT_FINAL_ASSEMBLY)
end




function Base.convert(::Type{PETScMatrix},a::PETScMatrix)
a
end
Expand Down
37 changes: 32 additions & 5 deletions src/PETScLinearSolvers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -98,10 +98,37 @@ function Algebra.solve!(x::PVector,ns::PETScLinearSolverNS,b::PVector)
x
end

# NOTE:
# We previously threw away PETSc's matrix `ns.B`, and re-set the KSP object (commented code).
# This is not only unnecessary, but can also cause some issues with MUMPS.
# I am not completely sure why, but here are some notes on the issue:
# - It is matrix-dependent, and only happens in parallel (nprocs > 1).
# - It has to do with the re-use of the symmetric permutation created by MUMPS to
# find the pivots.
# I think it probably re-orders the matrix internally, and does not re-order it again when we swap it
# using `KSPSetOperators`. So when accessing the new (non-permuted) matrix using the old permutation,
# it throws a stack overflow error.
# In fact, when updating the SNES setups in the nonlinear solvers, we do not re-set the matrix,
# but use `copy!` instead.
#function Algebra.numerical_setup!(ns::PETScLinearSolverNS,A::AbstractMatrix)
# # ns.A = A
# # ns.B = convert(PETScMatrix,A)
# # @check_error_code PETSC.KSPSetOperators(ns.ksp[],ns.B.mat[],ns.B.mat[])
# @assert nnz(ns.A) == nnz(A) # This is weak, but it might catch some errors
# copy!(ns.B,A)
# @check_error_code PETSC.KSPSetUp(ns.ksp[])
# ns
#end

function Algebra.numerical_setup!(ns::PETScLinearSolverNS,A::AbstractMatrix)
ns.A = A
ns.B = convert(PETScMatrix,A)
@check_error_code PETSC.KSPSetOperators(ns.ksp[],ns.B.mat[],ns.B.mat[])
@check_error_code PETSC.KSPSetUp(ns.ksp[])
if ns.A === A
copy!(ns.B,A)
@check_error_code PETSC.KSPSetUp(ns.ksp[])
else
ns.A = A
ns.B = convert(PETScMatrix,A)
@check_error_code PETSC.KSPSetOperators(ns.ksp[],ns.B.mat[],ns.B.mat[])
@check_error_code PETSC.KSPSetUp(ns.ksp[])
end
ns
end
end
Loading