Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Distributed interpolators for VectorValues #152

Merged
merged 6 commits into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,12 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## Unreleased

### Fixed

- Fixed distributed interpolators for Vector-Valued FESpaces. Since PR[#152](https://github.com/gridap/GridapDistributed.jl/pull/152).

## [0.4.3] 2024-07-18

### Added
Expand Down
118 changes: 72 additions & 46 deletions src/CellData.jl
Original file line number Diff line number Diff line change
Expand Up @@ -355,73 +355,99 @@ f(s) instead of s(f)?
end

# Interpolation at arbitrary points (returns -Inf if the point is not found)
Arrays.evaluate!(cache,f::DistributedCellField,x::Point) = evaluate!(cache,Interpolable(f),x)
Arrays.evaluate!(cache,f::DistributedCellField,x::AbstractVector{<:Point}) = evaluate!(cache,Interpolable(f),x)
Arrays.evaluate!(cache,f::DistributedCellField,x::Point) = evaluate(Interpolable(f),x)
Arrays.evaluate!(cache,f::DistributedCellField,x::AbstractVector{<:Point}) = evaluate(Interpolable(f),x)

struct DistributedInterpolable{A} <: Function
struct DistributedInterpolable{Tx,Ty,A} <: Function
interps::A
function DistributedInterpolable(interps::AbstractArray{<:Interpolable})
Tx,Ty = map(interps) do I
fi = I.uh
trian = get_triangulation(fi)
x = mean(testitem(get_cell_coordinates(trian)))
return typeof(x), return_type(fi,x)
end |> tuple_of_arrays
Tx = getany(Tx)
Ty = getany(Ty)
A = typeof(interps)
new{Tx,Ty,A}(interps)
end
end

local_views(a::DistributedInterpolable) = a.interps

function Interpolable(f::DistributedCellField;kwargs...)
interps = map(local_views(f)) do fun
Interpolable(fun,kwargs...)
interps = map(local_views(f)) do f
Interpolable(f,kwargs...)
end
DistributedInterpolable(interps)
end

(a::DistributedInterpolable)(x) = evaluate(a,x)

function Gridap.Arrays.return_cache(I::DistributedInterpolable,x::Point)
caches = map(local_views(I)) do fi
trian = get_triangulation(fi.uh)
y=mean(testitem(get_cell_coordinates(trian)))
@check typeof(testitem(x)) == typeof(y) "Can only evaluate DistributedInterpolable at physical points of the same dimension of the underlying triangulation"
return_cache(fi,y)
Arrays.return_cache(f::DistributedInterpolable,x::Point) = return_cache(f,[x])
Arrays.evaluate!(caches,I::DistributedInterpolable,x::Point) = first(evaluate!(caches,I,[x]))

function Arrays.return_cache(I::DistributedInterpolable{Tx,Ty},x::AbstractVector{<:Point}) where {Tx,Ty}
msg = "Can only evaluate DistributedInterpolable at physical points of the same dimension of the underlying triangulation"
@check Tx == eltype(x) msg
caches = map(local_views(I)) do I
trian = get_triangulation(I.uh)
y = mean(testitem(get_cell_coordinates(trian)))
return_cache(I,y)
end
caches
caches
end
Gridap.Arrays.return_cache(f::DistributedInterpolable,x::AbstractVector{<:Point}) = Gridap.Arrays.return_cache(f,testitem(x))

function Gridap.Arrays.evaluate!(caches,I::DistributedInterpolable,x::Point)
y=map(local_views(I),local_views(caches)) do fi,cache
function Arrays.evaluate!(cache,I::DistributedInterpolable{Tx,Ty},x::AbstractVector{<:Point}) where {Tx,Ty}
_allgather(x) = PartitionedArrays.getdata(getany(gather(x;destination=:all)))

# Evaluate in local portions of the domain. Only keep points inside the domain.
nx = length(x)
my_ids, my_vals = map(local_views(I),local_views(cache)) do I, cache
ids = Vector{Int}(undef,nx)
vals = Vector{Ty}(undef,nx)
k = 1
yi = zero(Ty)
for (i,xi) in enumerate(x)
inside = true
try
evaluate!(cache,fi,x)
yi = evaluate!(cache,I,xi)
catch
-Inf
inside = false
end
end
# reduce(max,y)
z=gather(y)
map_main(local_views(z)) do zi
reduce(max,zi)
end
end

function Gridap.Arrays.evaluate!(caches,I::DistributedInterpolable,v::AbstractVector{<:Point})
n=length(local_views(I))
m=length(v)
y=map(local_views(I),local_views(caches)) do fi,cache
w=Vector{Float64}(undef,m)
for (i,x) in enumerate(v)
try
w[i]=evaluate!(cache,fi,x)
catch
w[i]=-Inf
end
if inside
ids[k] = i
vals[k] = yi
k += 1
end
return w
end
# z=gather(y,destination=:all)
z=gather(y)
map_main(local_views(z)) do zi
w=Vector{Float64}(undef,m)
for i=0:m-1
w[i+1]=reduce(max,zi.data[zi.ptrs[1:n].+i])
end
return w
resize!(ids,k-1)
resize!(vals,k-1)
return ids, vals
end |> tuple_of_arrays

# Communicate results, so that every (id,value) pair is known by every process
if Ty <: VectorValue
D = num_components(Ty)
vals_d = Vector{Vector{eltype(Ty)}}(undef,D)
for d in 1:D
my_vals_d = map(y_p -> map(y_p_i -> y_p_i[d],y_p),my_vals)
vals_d[d] = _allgather(my_vals_d)
end
# reduce((v,w)->broadcast(max,v,w),y)
vals = map(VectorValue,vals_d...)
else
vals = _allgather(my_vals)
end
ids = _allgather(my_ids)

# Combine results
w = Vector{Ty}(undef,nx)
for (i,v) in zip(ids,vals)
w[i] = v
end

return w
end

# Support for distributed Dirac deltas
Expand Down
26 changes: 16 additions & 10 deletions test/CellDataTests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ function main(distribute,parts)
u3 = CellField(2.0,Ω)
u = _my_op∘(u1,u2,u3)

order = 1
order = 1
reffe = ReferenceFE(lagrangian,Float64,order)
V = TestFESpace(model,reffe)
uh = interpolate_everywhere(x->x[1]+x[2],V)
Expand All @@ -67,15 +67,21 @@ function main(distribute,parts)
x3 = Point(0.9,0.9)
v = [x1,x2,x3]

u1 = uh(x1)
u2 = uh(x2)
uv = uh(v)
@test uh(x1) == 0.2
@test uh(x2) == 1.0
@test uh(v) == [0.2,1.0,1.8]

map_main(u1,u2,uv) do u1,u2,v
@test u1 == 0.2
@test u2 == 1.0
@test v ==[0.2,1.0,1.8]
end
reffe = ReferenceFE(lagrangian,VectorValue{2,Float64},order)
V = TestFESpace(model,reffe)
uh = interpolate_everywhere(x->x,V)
x1 = Point(0.1,0.1)
x2 = Point(0.1,0.9)
x3 = Point(0.9,0.9)
v = [x1,x2,x3]

@test uh(x1) == x1
@test uh(x2) == x2
@test uh(v) == v

# Point δ
δ=DiracDelta{0}(model;tags=2)
Expand All @@ -89,7 +95,7 @@ function main(distribute,parts)
@test sum(δ(f)) ≈ 8.0
@test sum(δ(3.0)) ≈ 12.0
@test sum(δ(x->2*x)) ≈ VectorValue(16.0,0.0)

end

end # module
Loading