This package connects to an exported GA4 dataset and provides useful transformations as well as report-ready dimensional models that can be used to build reports or blend GA4 data with exported GA3 data.
Features include:
- Flattened models to access common events and event parameters such as
page_view
,session_start
, andpurchase
- Conversion of sharded event tables into a single partitioned table
- Incremental loading of GA4 data into your staging tables
- Session and user dimensional models with conversion counts
- Easy access to query parameters such as GCLID and UTM params
- Support for custom event parameters & custom user properties
- Mapping from source/medium to default channel grouping
- Ability to exclude query parameters (like
fbclid
) from page paths
model | description |
---|---|
stg_ga4__events | Contains cleaned event data that is enhanced with useful event and session keys. |
stg_ga4__event_* | 1 model per event (ex: page_view, purchase) which flattens event parameters specific to that event |
stg_ga4__event_items | Contains item data associated with e-commerce events (Purchase, add to cart, etc) |
stg_ga4__event_to_query_string_params | Mapping between each event and any query parameters & values that were contained in the event's page_location field |
stg_ga4__user_properties | Finds the most recent occurance of specified user_properties for each user |
stg_ga4__derived_user_properties | Finds the most recent occurance of specific event_params and assigns them to a user's user_key. Derived user properties are specified as variables (see documentation below) |
stg_ga4__derived_session_properties | Finds the most recent occurance of specific event_params and assigns them to a session's session_key. Derived session properties are specified as variables (see documentation below) |
stg_ga4__session_conversions | Produces session-grouped event counts for a configurable list of event names (see documentation below) |
stg_ga4__sessions_traffic_sources | Finds the first source, medium, campaign and default channel grouping for each session |
dim_ga4__users | Dimension table for users which contains attributes such as first and last page viewed. Unique on user_key which is a hash of the user_id if it exists, otherwise it falls back to the user_pseudo_id . |
dim_ga4__sessions | Dimension table for sessions which contains useful attributes such as geography, device information, and campaign data |
fct_ga4__pages | Fact table for pages which aggregates common page metrics by page_location, date, and hour. |
fct_ga4__sessions | Fact table for session metrics including session_engaged, sum_engagement_time_msecs, and others. |
seed file | description |
---|---|
ga4_source_categories.csv | Google's mapping between source and source_category . Downloaded from https://support.google.com/analytics/answer/9756891?hl=en |
Be sure to run dbt seed
before you run dbt run
.
Add the following to your packages.yml
file:
packages:
- package: Velir/ga4
version: [">=1.0.0", "<1.2.0"]
Add the following to your packages.yml
file:
packages:
- git: "https://github.com/Velir/dbt-ga4.git"
revision: 1.0.0
- Clone this repository to a folder in the same parent directory as your DBT project
- Update your project's
packages.yml
to include a reference to this package:
packages:
- local: ../dbt-ga4
This package assumes that you have an existing DBT project with a BigQuery profile and a BigQuery GCP instance available with GA4 event data loaded. Source data is located using the following variables which must be set in your dbt_project.yml
file.
vars:
ga4:
project: "your_gcp_project"
dataset: "your_ga4_dataset"
start_date: "YYYYMMDD" # Earliest date to load
frequency: "daily" # daily|streaming|daily+streaming Match to the type of export configured in GA4; daily+streaming appends today's intraday data to daily data
If you don't have any GA4 data of your own, you can connect to Google's public data set with the following settings:
vars:
project: "bigquery-public-data"
dataset: "ga4_obfuscated_sample_ecommerce"
start_date: "20210120"
More info about the GA4 obfuscated dataset here: https://support.google.com/analytics/answer/10937659?hl=en#zippy=%2Cin-this-article
Setting query_parameter_exclusions
will remove query string parameters from the page_location
and page_referrer
fields for all downstream processing. Original parameters are captured in the original_page_location
and original_page_referrer
fields. Ex:
vars:
ga4:
query_parameter_exclusions: ["gclid","fbclid","_ga"]
Within GA4, you can add custom parameters to any event. These custom parameters will be picked up by this package if they are defined as variables within your dbt_project.yml
file using the following syntax:
[event name]_custom_parameters
- name: "[name of custom parameter]"
value_type: "[string_value|int_value|float_value|double_value]"
For example:
vars:
ga4:
page_view_custom_parameters:
- name: "clean_event"
value_type: "string_value"
- name: "country_code"
value_type: "int_value"
You can optionally rename the output column:
vars:
ga4:
page_view_custom_parameters:
- name: "country_code"
value_type: "int_value"
rename_to: "country"
If there are custom parameters you need on all events, you can define defaults using default_custom_parameters
, for example:
vars:
ga4:
default_custom_parameters:
- name: "country_code"
value_type: "int_value"
User properties are provided by GA4 in the user_properties
repeated field. The most recent user property for each user will be extracted and included in the dim_ga4__users
model by configuring the user_properties
variable in your project as follows:
vars:
ga4:
user_properties:
- user_property_name: "membership_level"
value_type: "int_value"
- user_property_name: "account_status"
value_type: "string_value"
Derived user properties are different from "User Properties" in that they are derived from event parameters. This provides additional flexibility in allowing users to turn any event parameter into a user property.
Derived User Properties are included in the dim_ga4__users
model and contain the latest event parameter value per user.
derived_user_properties:
- event_parameter: "[your event parameter]"
user_property_name: "[a unique name for the derived user property]"
value_type: "[string_value|int_value|float_value|double_value]"
For example:
vars:
ga4:
derived_user_properties:
- event_parameter: "page_location"
user_property_name: "most_recent_page_location"
value_type: "string_value"
- event_parameter: "another_event_param"
user_property_name: "most_recent_param"
value_type: "string_value"
Derived session properties are similar to derived user properties, but on a per-session basis, for properties that change slowly over time. This provides additional flexibility in allowing users to turn any event parameter into a session property.
Derived Session Properties are included in the fct_ga4__sessions
model and contain the latest event parameter value per session.
derived_session_properties:
- event_parameter: "[your event parameter]"
session_property_name: "[a unique name for the derived session property]"
value_type: "[string_value|int_value|float_value|double_value]"
For example:
vars:
ga4:
derived_session_properties:
- event_parameter: "page_location"
session_property_name: "most_recent_page_location"
value_type: "string_value"
- event_parameter: "another_event_param"
session_property_name: "most_recent_param"
value_type: "string_value"
See the README file at /dbt_packages/models/staging/ga4/recommended_events for instructions on enabling Google's recommended events.
Specific event names can be specified as conversions by setting the conversion_events
variable in your dbt_project.yml
file. These events will be counted against each session and included in the fct_sessions.sql
dimensional model. Ex:
vars:
ga4:
conversion_events:['purchase','download']
By default, GA4 exports data into sharded event tables that use the event date as the table suffix in the format of events_YYYYMMDD
or events_intraday_YYYYMMDD
. This package incrementally loads data from these tables into base_ga4__events
which is partitioned on date. There are two incremental loading strategies available:
- Dynamic incremental partitions (Default) - This strategy queries the destination table to find the latest date available. Data beyond that date range is loaded in incrementally on each run.
- Static incremental partitions - This strategy is enabled when the
static_incremental_days
variable is set to an integer. It incrementally loads in the last X days worth of data regardless of what data is availabe. Google will update the daily event tables within the last 72 hours to handle late-arriving hits so you should use this strategy if late-arriving hits is a concern. The 'dynamic incremental' strategy will not re-process past date tables. Ex: Astatic_incremental_days
setting of3
would load data fromcurrent_date - 1
current_date - 2
andcurrent_date - 3
. Note thatcurrent_date
uses UTC as the timezone.
The value of the frequency
variable should match the "Frequency" setting on GA4's BigQuery Linking Admin page.
GA4 | dbt_project.yml |
---|---|
Daily | "daily" |
Streaming | "streaming" |
both Daily and Streaming | "daily+streaming" |
The daily option (default) is for sites that use just the daily, batch export. It can also be used as a substitute for the "daily+streaming" option where you don't care about including today's data so it doesn't strictly need to match the GA4 "Frequency" setting. The streaming option is for sites that only use the streaming export. The streaming export is not constrained by Google's one million event daily limit and so is the best option for sites that may exceed that limit. Selecting both "Daily" and "Streaming" in GA4 causes the streaming, intraday BigQuery tables to be deleted when the daily, batch tables are updated. The "daily+streaming" option uses the daily batch export and unions the streaming intraday tables. It is intended to append today's data from the streaming intraday to the batch tables.
Example:
vars:
ga4:
frequency:"daily+streaming"
This package assumes that BigQuery is the source of your GA4 data. Full instructions for connecting DBT to BigQuery are here: https://docs.getdbt.com/reference/warehouse-profiles/bigquery-profile
The easiest option is using OAuth with your Google Account. Summarized instructions are as follows:
- Download and initialize gcloud SDK with your Google Account (https://cloud.google.com/sdk/docs/install)
- Run the following command to provide default application OAuth access to BigQuery:
gcloud auth application-default login --scopes=https://www.googleapis.com/auth/bigquery,https://www.googleapis.com/auth/iam.test
This package uses pytest
as a method of unit testing individual models. More details can be found in the integration_tests/README.md folder.