Skip to content

Commit

Permalink
Add PaliGemma decoder example to ai_edge_torch.
Browse files Browse the repository at this point in the history
- Kaggle has only JAX model. Downloads PyTorch model from HF.
- ImageProcessing/Encoder will be added in a following change.

PiperOrigin-RevId: 694701725
  • Loading branch information
ai-edge-bot authored and copybara-github committed Nov 9, 2024
1 parent 56a9b17 commit f70448e
Show file tree
Hide file tree
Showing 3 changed files with 192 additions and 0 deletions.
14 changes: 14 additions & 0 deletions ai_edge_torch/generative/examples/paligemma/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# Copyright 2024 The AI Edge Torch Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
103 changes: 103 additions & 0 deletions ai_edge_torch/generative/examples/paligemma/decoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
# Copyright 2024 The AI Edge Torch Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Example of building a decoder of PaliGemma 3B model which is Gemma1."""

import ai_edge_torch.generative.layers.model_config as cfg
from ai_edge_torch.generative.utilities import model_builder
import ai_edge_torch.generative.utilities.loader as loading_utils

TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
ff_up_proj="language_model.model.layers.{}.mlp.up_proj",
ff_down_proj="language_model.model.layers.{}.mlp.down_proj",
ff_gate_proj="language_model.model.layers.{}.mlp.gate_proj",
attn_query_proj="language_model.model.layers.{}.self_attn.q_proj",
attn_key_proj="language_model.model.layers.{}.self_attn.k_proj",
attn_value_proj="language_model.model.layers.{}.self_attn.v_proj",
attn_output_proj="language_model.model.layers.{}.self_attn.o_proj",
pre_attn_norm="language_model.model.layers.{}.input_layernorm",
post_attn_norm="language_model.model.layers.{}.post_attention_layernorm",
embedding="language_model.model.embed_tokens",
final_norm="language_model.model.norm",
lm_head=None,
)


def get_decoder_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
"""Returns the model config for the decoder of a PaliGemma 3B model.
Args:
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
is 1024.
Returns:
The model config for the decoder of a PaliGemma 3B model.
"""
attn_config = cfg.AttentionConfig(
num_heads=8,
head_dim=256,
num_query_groups=1,
rotary_base=10000,
rotary_percentage=1.0,
)
ff_config = cfg.FeedForwardConfig(
type=cfg.FeedForwardType.GATED,
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
intermediate_size=16384,
)
norm_config = cfg.NormalizationConfig(
type=cfg.NormalizationType.RMS_NORM,
epsilon=1e-6,
zero_centered=True,
)
block_config = cfg.TransformerBlockConfig(
attn_config=attn_config,
ff_config=ff_config,
pre_attention_norm_config=norm_config,
post_attention_norm_config=norm_config,
)
config = cfg.ModelConfig(
vocab_size=257216,
num_layers=18,
max_seq_len=8192,
embedding_dim=2048,
embedding_scale=2048**0.5,
kv_cache_max_len=kv_cache_max_len,
block_configs=block_config,
final_norm_config=norm_config,
lm_head_use_bias=False,
enable_hlfb=True,
)
return config


def get_fake_decoder_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
config = get_decoder_config(kv_cache_max_len)
# PaliGemma decoder has only one block config.
config.block_config(0).ff_config.intermediate_size = 128
config.vocab_size = 128
config.num_layers = 2
config.max_seq_len = 2 * kv_cache_max_len
return config


def build_decoder(
checkpoint_path: str, **kwargs
) -> model_builder.DecoderOnlyModel:
return model_builder.build_decoder_only_model(
checkpoint_path=checkpoint_path,
config=get_decoder_config(**kwargs),
tensor_names=TENSOR_NAMES,
)
75 changes: 75 additions & 0 deletions ai_edge_torch/generative/examples/paligemma/verify_decoder.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Copyright 2024 The AI Edge Torch Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Verifies the reauthored decoder of PaliGemma 3B model."""

import logging
import pathlib

from absl import app
from absl import flags
from ai_edge_torch.generative.examples.paligemma import decoder
from ai_edge_torch.generative.utilities import transformers_verifier
from ai_edge_torch.generative.utilities import verifier
import transformers

_PROMPTS = flags.DEFINE_multi_string(
"prompts",
"What is the meaning of life?",
"The input prompts to generate answers.",
)
_MAX_NEW_TOKENS = flags.DEFINE_integer(
"max_new_tokens",
30,
"The maximum size of the generated tokens.",
)


def main(_):
checkpoint = "google/paligemma-3b-mix-224"
logging.info("Loading the original model from: %s", checkpoint)
original_full_model = (
transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
)
original_language_model = original_full_model.eval().language_model

# Locate the cached dir.
cached_config_file = transformers.utils.cached_file(
checkpoint, transformers.utils.CONFIG_NAME
)
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
reauthored_model = decoder.build_decoder(reauthored_checkpoint)

logging.info("Loading the tokenizer from: %s", checkpoint)
# It works only when GemmaTokenizerFast is available. In some environments,
# use_fast=False doeesn't work either if the tokenizer cannot load the
# sentencepiece model file properly.
processor = transformers.AutoProcessor.from_pretrained(checkpoint)

verifier.verify_reauthored_model(
original_model=transformers_verifier.TransformersModelWrapper(
original_language_model
),
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
tokenizer=verifier.TokenizerWrapper(processor.tokenizer),
generate_prompts=_PROMPTS.value,
max_new_tokens=_MAX_NEW_TOKENS.value,
atol=1e-04,
)


if __name__ == "__main__":
app.run(main)

0 comments on commit f70448e

Please sign in to comment.