-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add a script to convert a batch of GenAI models to TF Lite.
PiperOrigin-RevId: 677581869
- Loading branch information
1 parent
44e57bb
commit b48475b
Showing
1 changed file
with
173 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# Copyright 2024 The AI Edge Torch Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""A python script to convert a batch of Generative models to TF Lite.""" | ||
|
||
import dataclasses | ||
import enum | ||
import os | ||
import pathlib | ||
from typing import Callable, Sequence | ||
|
||
from absl import app | ||
from absl import flags | ||
from ai_edge_torch.generative.examples.gemma import gemma1 | ||
from ai_edge_torch.generative.examples.gemma import gemma2 | ||
from ai_edge_torch.generative.examples.phi import phi2 | ||
from ai_edge_torch.generative.examples.tiny_llama import tiny_llama | ||
from ai_edge_torch.generative.utilities import converter | ||
from ai_edge_torch.generative.utilities import verifier | ||
import torch | ||
|
||
_CHECKPOINT_ROOT_PATH = flags.DEFINE_string( | ||
"checkpoint_root_path", | ||
os.path.join(pathlib.Path.home(), "Downloads/llm_data/"), | ||
"The root path to the checkpoints.", | ||
) | ||
|
||
_OUTPUT_DIR = flags.DEFINE_string( | ||
"output_dir", | ||
os.path.join(pathlib.Path.home(), "models"), | ||
"The output directory to store the converted models.", | ||
) | ||
|
||
|
||
@enum.unique | ||
class ExportPrecision(enum.Enum): | ||
"""Specifies the precision of the exported model.""" | ||
|
||
INT8 = enum.auto() | ||
FP32 = enum.auto() | ||
|
||
|
||
@dataclasses.dataclass | ||
class ConversionConfig: | ||
"""A dataclass to store the conversion config for a model.""" | ||
|
||
model_name: str | ||
input_checkpoint: str | ||
tflite_output_path: str | ||
prefill_seq_len: int | ||
kv_cache_max_len: int | ||
export_precision: Sequence[ExportPrecision] | ||
model_builder: Callable[..., torch.nn.Module] | ||
|
||
def print_config(self) -> None: | ||
"""Prints the conversion config.""" | ||
verifier.log_msg("Model name:", self.model_name) | ||
verifier.log_msg("Input checkpoint:", self.input_checkpoint) | ||
verifier.log_msg("TF Lite output path:", self.tflite_output_path) | ||
verifier.log_msg("Prefill seq len:", self.prefill_seq_len) | ||
verifier.log_msg("KV cache max len:", self.kv_cache_max_len) | ||
verifier.log_msg("Export precision:", self.export_precision) | ||
|
||
|
||
def prepare_conversion_configs() -> Sequence[ConversionConfig]: | ||
"""Prepares the conversion configs for a batch of models.""" | ||
conversion_configs = [ | ||
ConversionConfig( | ||
model_name="tinyllama", | ||
input_checkpoint=os.path.join( | ||
_CHECKPOINT_ROOT_PATH.value, "tiny_llama" | ||
), | ||
tflite_output_path=os.path.join(_OUTPUT_DIR.value, "tiny_llama"), | ||
prefill_seq_len=1024, | ||
kv_cache_max_len=1280, | ||
export_precision=[ExportPrecision.INT8, ExportPrecision.FP32], | ||
model_builder=tiny_llama.build_model, | ||
), | ||
ConversionConfig( | ||
model_name="gemma", | ||
input_checkpoint=os.path.join( | ||
_CHECKPOINT_ROOT_PATH.value, "gemma-2b" | ||
), | ||
tflite_output_path=os.path.join(_OUTPUT_DIR.value, "gemma"), | ||
prefill_seq_len=1024, | ||
kv_cache_max_len=1280, | ||
export_precision=[ExportPrecision.INT8, ExportPrecision.FP32], | ||
model_builder=gemma1.build_2b_model, | ||
), | ||
ConversionConfig( | ||
model_name="gemma2", | ||
input_checkpoint=os.path.join( | ||
_CHECKPOINT_ROOT_PATH.value, "gemma2-2b" | ||
), | ||
tflite_output_path=os.path.join(_OUTPUT_DIR.value, "gemma2"), | ||
prefill_seq_len=1024, | ||
kv_cache_max_len=1280, | ||
export_precision=[ExportPrecision.INT8, ExportPrecision.FP32], | ||
model_builder=gemma2.build_2b_model, | ||
), | ||
ConversionConfig( | ||
model_name="phi2", | ||
input_checkpoint=os.path.join(_CHECKPOINT_ROOT_PATH.value, "phi2"), | ||
tflite_output_path=os.path.join(_OUTPUT_DIR.value, "phi2"), | ||
prefill_seq_len=1024, | ||
kv_cache_max_len=1280, | ||
export_precision=[ExportPrecision.INT8, ExportPrecision.FP32], | ||
model_builder=phi2.build_model, | ||
), | ||
] | ||
return conversion_configs | ||
|
||
|
||
def get_output_filename( | ||
model_name: str, | ||
precision: ExportPrecision, | ||
prefill_seq_len: int, | ||
kv_cache_max_len: int, | ||
) -> str: | ||
"""Returns the output filename for a converted TF Litemodel.""" | ||
if precision == ExportPrecision.INT8: | ||
precision_str = "q8" | ||
elif precision == ExportPrecision.FP32: | ||
precision_str = "fp32" | ||
else: | ||
raise ValueError(f"Unsupported precision: {precision}") | ||
return f"{model_name}_{precision_str}_seq{prefill_seq_len}_ekv{kv_cache_max_len}.tflite" | ||
|
||
|
||
def convert_models(conversion_configs: Sequence[ConversionConfig]) -> None: | ||
"""Executes the conversion for a batch of models specified by the `conversion_configs`.""" | ||
for config in conversion_configs: | ||
verifier.log_msg( | ||
"Converting model:", config.model_name, " with the following config:" | ||
) | ||
config.print_config() | ||
pytorch_model = config.model_builder( | ||
config.input_checkpoint, kv_cache_max_len=config.kv_cache_max_len | ||
) | ||
for precision in config.export_precision: | ||
output_filename = get_output_filename( | ||
config.model_name, | ||
precision, | ||
config.prefill_seq_len, | ||
config.kv_cache_max_len, | ||
) | ||
converter.convert_to_tflite( | ||
pytorch_model, | ||
tflite_path=os.path.join(config.tflite_output_path, output_filename), | ||
prefill_seq_len=config.prefill_seq_len, | ||
quantize=True if precision == ExportPrecision.INT8 else False, | ||
) | ||
verifier.log_msg("Successfully converted model:", output_filename) | ||
|
||
|
||
def main(_): | ||
convert_models(prepare_conversion_configs()) | ||
|
||
|
||
if __name__ == "__main__": | ||
app.run(main) |