-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add fx pass to remove sdpa composite zero mask input (#62)
* init * add copyright * Add test
- Loading branch information
Showing
4 changed files
with
205 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
# Copyright 2024 The AI Edge Torch Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
import torch | ||
|
||
from ai_edge_torch.convert.fx_passes import CanonicalizePass | ||
from ai_edge_torch.convert.fx_passes import run_passes | ||
from ai_edge_torch.generative.fx_passes.remove_sdpa_zero_mask_pass import RemoveSDPACompositeZeroMaskPass # NOQA | ||
|
||
|
||
def run_generative_passes( | ||
exported_program: torch.export.ExportedProgram, | ||
) -> torch.export.ExportedProgram: | ||
return run_passes( | ||
exported_program, | ||
[ | ||
RemoveSDPACompositeZeroMaskPass(), | ||
CanonicalizePass(), | ||
], | ||
) |
47 changes: 47 additions & 0 deletions
47
ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# Copyright 2024 The AI Edge Torch Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
import torch | ||
|
||
from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassBase | ||
from ai_edge_torch.convert.fx_passes._pass_base import ExportedProgramPassResult # NOQA | ||
|
||
|
||
class RemoveSDPACompositeZeroMaskPass(ExportedProgramPassBase): | ||
|
||
def is_zero_tensor_node(self, node: torch.fx.Node): | ||
return node.target == torch.ops.aten.zeros.default | ||
|
||
def call(self, exported_program: torch.export.ExportedProgram): | ||
graph = exported_program.graph_module.graph | ||
for node in graph.nodes: | ||
if not ( | ||
node.op == "call_function" | ||
and node.target == torch.ops.xla.mark_tensor.default | ||
): | ||
continue | ||
|
||
source, name, io_position, id, is_input = node.args[:5] | ||
# Composite info: | ||
# - name: odml.scaled_dot_product_attention | ||
# - inputs: q, k, v, mask | ||
if name == "odml.scaled_dot_product_attention" and is_input and io_position == 3: | ||
if self.is_zero_tensor_node(source): | ||
# Remove the mark_tensor call on the mask input by | ||
# replacing the target with an identity function. | ||
node.target = lambda *args, **kwargs: args[0] | ||
|
||
exported_program.graph_module.graph.lint() | ||
exported_program.graph_module.recompile() | ||
return ExportedProgramPassResult(exported_program, True) |
125 changes: 125 additions & 0 deletions
125
ai_edge_torch/generative/fx_passes/test/test_remove_sdpa_zero_mask_pass.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
# Copyright 2024 The AI Edge Torch Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
import re | ||
from typing import Callable, Union | ||
import unittest | ||
|
||
import torch | ||
import torch_xla | ||
|
||
from ai_edge_torch.convert.fx_passes import CanonicalizePass | ||
from ai_edge_torch.convert.fx_passes import run_passes | ||
from ai_edge_torch.generative.fx_passes import RemoveSDPACompositeZeroMaskPass | ||
from ai_edge_torch.generative.layers.attention import SelfAttention | ||
import ai_edge_torch.generative.layers.model_config as layers_cfg | ||
import ai_edge_torch.generative.layers.unet.builder as unet_builder | ||
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg | ||
|
||
|
||
def _export_to_stablehlo(func: Union[torch.nn.Module, Callable], export_args): | ||
if not isinstance(func, torch.nn.Module): | ||
|
||
class TestModule(torch.nn.Module): | ||
|
||
def forward(self, *args, **kwargs): | ||
return func(*args, **kwargs) | ||
|
||
module = TestModule().eval() | ||
else: | ||
module = func | ||
|
||
exported_program = torch.export.export(module, export_args) | ||
exported_program = run_passes( | ||
exported_program, | ||
[ | ||
RemoveSDPACompositeZeroMaskPass(), | ||
CanonicalizePass(), | ||
], | ||
) | ||
|
||
return torch_xla.stablehlo.exported_program_to_stablehlo( | ||
exported_program | ||
).get_stablehlo_text() | ||
|
||
|
||
class TestRemoveSDPAZeroMaskPass(unittest.TestCase): | ||
|
||
def test_self_attention_no_zero_mask_composite_input(self): | ||
class SampleSdpaBlock(torch.nn.Module): | ||
"""Sample attention block with SDPA""" | ||
|
||
def __init__(self, config: unet_cfg.AttentionBlock2DConfig): | ||
super().__init__() | ||
self.config = config | ||
self.attention = SelfAttention( | ||
config.attention_batch_size, | ||
config.dim, | ||
config.attention_config, | ||
0, | ||
enable_hlfb=config.enable_hlfb, | ||
) | ||
|
||
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: | ||
B, C, H, W = input_tensor.shape | ||
x = input_tensor | ||
x = input_tensor.view(B, C, H * W) | ||
x = x.transpose(-1, -2) | ||
# x = x.contiguous() # Prevent BATCH_MATMUL op in converted tflite. | ||
x = self.attention(x) | ||
x = x.transpose(-1, -2) | ||
x = x.view(B, C, H, W) | ||
return x | ||
|
||
def get_model_config() -> unet_cfg.AttentionBlock2DConfig: | ||
"""Get configs for the Decoder of Stable Diffusion v1.5""" | ||
in_channels = 3 | ||
latent_channels = 4 | ||
out_channels = 3 | ||
block_out_channels = [128, 256, 512, 512] | ||
scaling_factor = 0.18215 | ||
layers_per_block = 3 | ||
|
||
norm_config = layers_cfg.NormalizationConfig( | ||
layers_cfg.NormalizationType.GROUP_NORM, group_num=32 | ||
) | ||
|
||
return unet_cfg.AttentionBlock2DConfig( | ||
dim=block_out_channels[-1], | ||
normalization_config=norm_config, | ||
attention_config=layers_cfg.AttentionConfig( | ||
num_heads=1, | ||
num_query_groups=1, | ||
qkv_use_bias=True, | ||
output_proj_use_bias=True, | ||
enable_kv_cache=False, | ||
qkv_transpose_before_split=True, | ||
rotary_percentage=0.0, | ||
), | ||
) | ||
|
||
stablehlo = _export_to_stablehlo( | ||
SampleSdpaBlock(get_model_config()).eval(), (torch.rand(1, 512, 64, 64),) | ||
) | ||
print(stablehlo) | ||
self.assertTrue( | ||
re.search( | ||
'stablehlo\.composite "odml\.scaled_dot_product_attention" %\d+, %\d+, %\d+ {', | ||
stablehlo, | ||
) | ||
) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |