-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add full integer quantization for SLICE in Quantizer
PiperOrigin-RevId: 696277110
- Loading branch information
1 parent
ef8ea08
commit 6e78a69
Showing
8 changed files
with
237 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
110 changes: 110 additions & 0 deletions
110
ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_op_tests/slice_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
import os | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize | ||
from ai_edge_quantizer.algorithms.uniform_quantize.naive_min_max_quantize_op_tests import test_utils as naive_min_max_test_utils | ||
from ai_edge_quantizer.utils import test_utils | ||
from ai_edge_quantizer.utils import tfl_flatbuffer_utils | ||
|
||
_TFLOpName = qtyping.TFLOperationName | ||
_ComputePrecision = qtyping.ComputePrecision | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_QuantTransformation = qtyping.QuantTransformation | ||
_OpTestInfo = naive_min_max_test_utils.OpTestInfo | ||
|
||
_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile( | ||
"../../../tests/models" | ||
) | ||
_DEFAULT_ACTIVATION_QUANT_SETTING = ( | ||
naive_min_max_test_utils.DEFAULT_ACTIVATION_QUANT_SETTING | ||
) | ||
_DEFAULT_WEIGHT_QUANT_SETTING = ( | ||
naive_min_max_test_utils.DEFAULT_WEIGHT_QUANT_SETTING | ||
) | ||
|
||
|
||
class SliceTest(naive_min_max_test_utils.NaiveMinMaxQuantizeTest): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
np.random.seed(666) | ||
self._test_model_path = os.path.join( | ||
_TEST_DATA_PREFIX_PATH, "single_slice.tflite" | ||
) | ||
self._op_test_info = _OpTestInfo( | ||
test_model=tfl_flatbuffer_utils.read_model(self._test_model_path), | ||
op_tensor_names={}, | ||
input_range=(np.array([[-10]]), np.array([[8]])), | ||
output_range=(np.array([[10]]), np.array([[88]])), | ||
) | ||
# The test model has one subgraph for now. | ||
self._graph_info = qtyping.GraphInfo( | ||
subgraph_tensors=self._op_test_info.test_model.subgraphs[0].tensors, | ||
buffers=self._op_test_info.test_model.buffers, | ||
) | ||
|
||
@parameterized.parameters( | ||
(_DEFAULT_ACTIVATION_QUANT_SETTING), | ||
( | ||
_TensorQuantConfig( | ||
num_bits=16, | ||
symmetric=True, | ||
granularity=qtyping.QuantGranularity.TENSORWISE, | ||
) | ||
), | ||
) | ||
def test_materialize_slice_succeeds(self, activation_tensor_config): | ||
op_quant_config = qtyping.OpQuantizationConfig( | ||
activation_tensor_config=activation_tensor_config, | ||
weight_tensor_config=_DEFAULT_WEIGHT_QUANT_SETTING, | ||
compute_precision=_ComputePrecision.INTEGER, # SRQ. | ||
) | ||
# Read from Model Explorer. | ||
subgraph0 = self._op_test_info.test_model.subgraphs[0] | ||
subgraph_op_id = 0 | ||
op = subgraph0.operators[subgraph_op_id] | ||
op_info = qtyping.OpInfo( | ||
op=op, | ||
op_name=qtyping.TFLOperationName.SLICE, | ||
subgraph_op_index=subgraph_op_id, | ||
op_quant_config=op_quant_config, | ||
) | ||
|
||
# Test settings. | ||
op_tensor_names = {} | ||
op_tensor_names["input"] = "slice_input_tensor:0" | ||
op_tensor_names["input2"] = "slice_begin:0" | ||
op_tensor_names["input3"] = "slice_size:0" | ||
op_tensor_names["output"] = "PartitionedCall:0" | ||
self._op_test_info.op_tensor_names = op_tensor_names | ||
self._test_no_weights_op( | ||
op_info, | ||
self._graph_info, | ||
self._op_test_info, | ||
naive_min_max_quantize.materialize_slice, | ||
same_input_output_params=True, | ||
inputs_to_ignore=[1, 2], # Ignore tensors. | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
googletest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""E2E tests for the quantizer for model with slice.""" | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer import quantizer | ||
from ai_edge_quantizer.utils import test_utils | ||
|
||
_OpExecutionMode = qtyping.OpExecutionMode | ||
_OpName = qtyping.TFLOperationName | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_OpQuantConfig = qtyping.OpQuantizationConfig | ||
|
||
_RNG = np.random.default_rng(66) | ||
|
||
|
||
def _get_dummy_data(num_samples): | ||
data = [] | ||
for _ in range(num_samples): | ||
data.append({ | ||
'input_tensor': _RNG.uniform(size=(32, 24, 32)).astype(np.float32), | ||
'begin': np.array([1, 0, 0], dtype=np.int32), | ||
'size': np.array([16, 8, 16], dtype=np.int32), | ||
}) | ||
return data | ||
|
||
|
||
def _get_calibration_data(num_samples: int = 64): | ||
calibration_samples = _get_dummy_data(num_samples) | ||
calibration_data = { | ||
'slice': calibration_samples, | ||
} | ||
return calibration_data | ||
|
||
|
||
def _get_test_data(num_samples: int = 8): | ||
return _get_calibration_data(num_samples) | ||
|
||
|
||
class SliceTest(parameterized.TestCase): | ||
|
||
def _custom_setup(self, test_model_file): | ||
super().setUp() | ||
self.float_model_path = test_utils.get_path_to_datafile( | ||
f'../models/{test_model_file}' | ||
) | ||
self._quantizer = quantizer.Quantizer(self.float_model_path) | ||
|
||
@parameterized.parameters( | ||
'../../recipes/default_a8w8_recipe.json', | ||
'../../recipes/default_a16w8_recipe.json', | ||
) | ||
def test_slice_model_full_integer(self, recipe_path): | ||
self._custom_setup('single_slice.tflite') | ||
recipe_path = test_utils.get_path_to_datafile(recipe_path) | ||
self._quantizer.load_quantization_recipe(recipe_path) | ||
self.assertTrue(self._quantizer.need_calibration) | ||
calibration_result = self._quantizer.calibrate(_get_calibration_data()) | ||
_ = self._quantizer.quantize(calibration_result).export_model( | ||
'/tmp/slice_quantized.tflite' | ||
) | ||
# Skip model size check because the quantized model doesn't decrease as | ||
# there are no weights in the model file. | ||
|
||
comparion_result = self._quantizer.validate( | ||
error_metrics='mse', test_data=_get_test_data(num_samples=1) | ||
) | ||
self._check_comparion_result( | ||
comparion_result, | ||
output_tolerance=1e-4, | ||
) | ||
|
||
# TODO: b/345503484 - Check weight tensor type of the quantized model. | ||
def _check_comparion_result( | ||
self, | ||
comparion_result, | ||
output_tolerance, | ||
): | ||
# TODO: b/357959309 - Use comparison result directly for testing. | ||
comparion_result = comparion_result.get_all_tensor_results() | ||
# Check final output. | ||
output_mse = comparion_result['PartitionedCall:0'] | ||
self.assertLess(output_mse, output_tolerance) | ||
|
||
|
||
if __name__ == '__main__': | ||
googletest.main() |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters