-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
5 changed files
with
118 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
106 changes: 106 additions & 0 deletions
106
ai_edge_quantizer/tests/end_to_end_tests/batch_matmul_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""E2E tests for the quantizer for model with mul.""" | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer import quantizer | ||
from ai_edge_quantizer.utils import test_utils | ||
from tensorflow.python.platform import gfile # pylint: disable=g-direct-tensorflow-import | ||
|
||
_ComputePrecision = qtyping.ComputePrecision | ||
_OpName = qtyping.TFLOperationName | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_OpQuantConfig = qtyping.OpQuantizationConfig | ||
|
||
_RNG = np.random.default_rng(66) | ||
_INPUT_SHAPES = ((2, 4, 16), (2, 16, 8)) | ||
|
||
|
||
def _get_dummy_data(num_inputs, num_samples): | ||
data = [] | ||
for _ in range(num_samples): | ||
data.append({ | ||
f'input_{i+1}': _RNG.uniform(size=_INPUT_SHAPES[i]).astype(np.float32) | ||
for i in range(num_inputs) | ||
}) | ||
return data | ||
|
||
|
||
def _get_calibration_data(num_inputs, num_samples: int = 512): | ||
return _get_dummy_data(num_inputs, num_samples) | ||
|
||
|
||
def _get_test_data(num_inputs, num_samples: int = 8): | ||
return {'serving_default': _get_dummy_data(num_inputs, num_samples)} | ||
|
||
|
||
# TODO: b/353738479#comment2 - Add SRQ after the TFLite assertion error is | ||
# fixed. | ||
class BatchMatmulTest(parameterized.TestCase): | ||
|
||
def _custom_setup(self, test_model_file): | ||
super().setUp() | ||
self.float_model_path = test_utils.get_path_to_datafile( | ||
f'../models/{test_model_file}' | ||
) | ||
self._quantizer = quantizer.Quantizer(self.float_model_path) | ||
|
||
@parameterized.parameters( | ||
('../../recipes/default_af32w4float_recipe.json', 0.1), | ||
('../../recipes/default_af32w8float_recipe.json', 0.01) | ||
) | ||
def test_bmm_constant_input_model_weight_only(self, recipe_path, output_tol): | ||
self._custom_setup('bmm_constant_input.tflite') | ||
recipe_path = test_utils.get_path_to_datafile(recipe_path) | ||
self._quantizer.load_quantization_recipe(recipe_path) | ||
calibration_result = self._quantizer.calibrate( | ||
_get_calibration_data(num_inputs=1) | ||
) | ||
quant_result = self._quantizer.quantize(calibration_result) | ||
# Check model size. | ||
with gfile.GFile(self.float_model_path, 'rb') as f: | ||
float_model_bytearray = bytearray(f.read()) | ||
self.assertLess( | ||
len(quant_result.quantized_model), len(float_model_bytearray) | ||
) | ||
|
||
comparion_result = self._quantizer.validate( | ||
error_metrics='mse', test_data=_get_test_data(num_inputs=1) | ||
) | ||
self._check_comparion_result( | ||
comparion_result, | ||
output_tolerance=output_tol, | ||
) | ||
|
||
# TODO: b/345503484 - Check weight tensor type of the quantized model. | ||
def _check_comparion_result( | ||
self, | ||
comparion_result, | ||
output_tolerance, | ||
): | ||
# TODO: b/357959309 - Use comparison result directly for testing. | ||
comparion_result = comparion_result.get_all_tensor_results() | ||
# Check final output. | ||
output_mse = comparion_result['PartitionedCall:0'] | ||
self.assertLess(output_mse, output_tolerance) | ||
|
||
|
||
if __name__ == '__main__': | ||
googletest.main() |
Binary file not shown.
Binary file not shown.