-
Notifications
You must be signed in to change notification settings - Fork 3
/
lanedetection.py
77 lines (66 loc) · 2.48 KB
/
lanedetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import cv2
import numpy as np
def make_coordinates(image, line_parameters):
slope, intercept= line_parameters
y1= image.shape[0]
y2= int(y1*(3/5))
x1= int((y1-intercept)/slope)
x2=int((y2-intercept)/slope)
return np.array([x1,y1,x2,y2])
def average_slope_intercept(image,lines):
left_fit=[]
right_fit=[]
for line in lines:
x1,y1,x2,y2= line.reshape(4)
parameters= np.polyfit((x1,x2),(y1,y2),1)
slope= parameters[0]
intercept = parameters[1]
if slope <0:
left_fit.append((slope,intercept))
else:
right_fit.append((slope,intercept))
left_fit_average= np.average(left_fit,axis=0)
right_fit_average=np.average(right_fit,axis=0)
left_line=make_coordinates(image, left_fit_average)
right_line=make_coordinates(image, right_fit_average)
return np.array([left_line,right_line])
def canny(image):
gray=cv2.cvtColor(image,cv2.COLOR_RGB2GRAY)
blur=cv2.GaussianBlur(gray,(5,5),0)
canny=cv2.Canny(blur,50,150)
return canny
def display_lines(image,lines):
line_image=np.zeros_like(image)
if lines is not None:
for x1,y1,x2,y2 in lines:
cv2.line(line_image,(x1,y1),(x2,y2),(255,0,0),10)
return line_image
def region_of_interest(image):
height =image.shape[0]
polygons =np.array([[(200,height),(1100,height),(550,250)]])
mask=np.zeros_like(image)
cv2.fillPoly(mask, polygons, 255)
masked_image=cv2.bitwise_and(image,mask)
return masked_image
# this code can be use for lane detection in image
# image= cv2.imread('testimage2.jpeg')
# lane_image=np.copy(image)
# canny=canny(lane_image)
# cropped_image= region_of_interest(canny)
# lines= cv2.HoughLinesP(cropped_image,2 ,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5)
# averaged_lines= average_slope_intercept(lane_image, lines)
# line_image= display_lines(lane_image,averaged_lines)
# combo_image= cv2.addWeighted(lane_image,0.8,line_image,1,1)
cv2.imshow("result",combo_image)
cv2.waitKey(0)
cap= cv2.VideoCapture("test22.mp4")
while(cap.isOpened()):
_, frame = cap.read()
canny=canny(frame)
cropped_image= region_of_interest(canny)
lines= cv2.HoughLinesP(cropped_image,2 ,np.pi/180,100,np.array([]),minLineLength=40,maxLineGap=5)
averaged_lines= average_slope_intercept(frame, lines)
line_image= display_lines(frame,averaged_lines)
combo_image= cv2.addWeighted(frame,0.8,line_image,1,1)
cv2.imshow("result",combo_image)
cv2.waitKey(1)