Skip to content

Commit

Permalink
ggml : force F32 precision for ggml_mul_mat
Browse files Browse the repository at this point in the history
  • Loading branch information
ggerganov committed Dec 27, 2023
1 parent dc68f00 commit 4011f09
Show file tree
Hide file tree
Showing 2 changed files with 58 additions and 17 deletions.
69 changes: 52 additions & 17 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -7576,7 +7576,7 @@ static void ggml_cuda_op_mul_mat_cublas(

const int compute_capability = g_device_caps[id].cc;

if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
cuda_pool_alloc<half> src0_as_f16;
if (src0->type != GGML_TYPE_F16) {
Expand All @@ -7597,23 +7597,44 @@ static void ggml_cuda_op_mul_mat_cublas(
to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
}
const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);

const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;

CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));

const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
switch (dst->op_params[0]) {
case GGML_PREC_DEFAULT:
{
cuda_pool_alloc<half> dst_f16(row_diff*src1_ncols);

const half alpha_f16 = 1.0f;
const half beta_f16 = 0.0f;

CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
CUBLAS_COMPUTE_16F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));

const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
} break;
case GGML_PREC_F32:
{
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;

CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], stream));
CUBLAS_CHECK(
cublasGemmEx(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f32, src0_ptr, CUDA_R_16F, ne00,
src1_ptr, CUDA_R_16F, ne10,
&beta_f32, dst_dd_i, CUDA_R_32F, ldc,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
} break;
}
}
else {
cuda_pool_alloc<float> src0_ddq_as_f32;
Expand Down Expand Up @@ -9228,6 +9249,20 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
}

void ggml_cuda_free_data(struct ggml_tensor * tensor) {
// print current mem usage using cudaMemGetInfo
// TODO: this is a hack - need better solution
{
size_t free;
size_t total;
CUDA_CHECK(cudaMemGetInfo(&free, &total));

static size_t used = 0;
if (used < total - free) {
printf("CUDA: used %zu MB, free %zu MB\n", (total - free)/1024/1024, free/1024/1024);
used = total - free;
}
}

if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
return;
}
Expand Down
6 changes: 6 additions & 0 deletions ggml.c
Original file line number Diff line number Diff line change
Expand Up @@ -4077,6 +4077,12 @@ struct ggml_tensor * ggml_mul_mat(
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);

// TMP: force f32 precision
{
const int32_t prec_i32 = GGML_PREC_F32;
ggml_set_op_params_i32(result, 0, prec_i32);
}

result->op = GGML_OP_MUL_MAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
Expand Down

0 comments on commit 4011f09

Please sign in to comment.