pip install -r requirements.txt
apt-get install tesseract-ocr -y
apt-get install libtesseract-dev -y
apt-get install poppler-utils -y
Please refer to this readme.
export no_proxy=${your_no_proxy}
export http_proxy=${your_http_proxy}
export https_proxy=${your_http_proxy}
export MILVUS=${your_milvus_host_ip}
export MILVUS_PORT=19530
export COLLECTION_NAME=${your_collection_name}
export MOSEC_EMBEDDING_ENDPOINT=${your_embedding_endpoint}
Start document preparation microservice for Milvus with below command.
python prepare_doc_milvus.py
cd ../../../../
docker build -t opea/dataprep-milvus:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy --build-arg no_proxy=$no_proxy -f comps/dataprep/milvus/docker/Dockerfile .
docker run -d --name="dataprep-milvus-server" -p 6010:6010 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e no_proxy=$no_proxy -e MOSEC_EMBEDDING_ENDPOINT=${your_embedding_endpoint} -e MILVUS=${your_milvus_host_ip} opea/dataprep-milvus:latest
Once document preparation microservice for Milvus is started, user can use below command to invoke the microservice to convert the document to embedding and save to the database.
Make sure the file path after files=@
is correct.
- Single file upload
curl -X POST \
-H "Content-Type: multipart/form-data" \
-F "files=@./file.pdf" \
http://localhost:6010/v1/dataprep
You can specify chunk_size and chunk_size by the following commands.
curl -X POST \
-H "Content-Type: multipart/form-data" \
-F "files=@./file.pdf" \
-F "chunk_size=1500" \
-F "chunk_overlap=100" \
http://localhost:6010/v1/dataprep
- Multiple file upload
curl -X POST \
-H "Content-Type: multipart/form-data" \
-F "files=@./file1.pdf" \
-F "files=@./file2.pdf" \
-F "files=@./file3.pdf" \
http://localhost:6010/v1/dataprep
- Links upload (not supported for llama_index now)
curl -X POST \
-F 'link_list=["https://www.ces.tech/"]' \
http://localhost:6010/v1/dataprep
or
import requests
import json
proxies = {"http": ""}
url = "http://localhost:6010/v1/dataprep"
urls = [
"https://towardsdatascience.com/no-gpu-no-party-fine-tune-bert-for-sentiment-analysis-with-vertex-ai-custom-jobs-d8fc410e908b?source=rss----7f60cf5620c9---4"
]
payload = {"link_list": json.dumps(urls)}
try:
resp = requests.post(url=url, data=payload, proxies=proxies)
print(resp.text)
resp.raise_for_status() # Raise an exception for unsuccessful HTTP status codes
print("Request successful!")
except requests.exceptions.RequestException as e:
print("An error occurred:", e)
We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. "table_strategy" refers to the strategies to understand tables for table retrieval. As the setting progresses from "fast" to "hq" to "llm," the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is "fast".
Note: If you specify "table_strategy=llm", You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
.
curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep
We support table extraction from pdf documents. You can specify process_table and table_strategy by the following commands. "table_strategy" refers to the strategies to understand tables for table retrieval. As the setting progresses from "fast" to "hq" to "llm," the focus shifts towards deeper table understanding at the expense of processing speed. The default strategy is "fast".
Note: If you specify "table_strategy=llm", You should first start TGI Service, please refer to 1.2.1, 1.3.1 in https://github.com/opea-project/GenAIComps/tree/main/comps/llms/README.md, and then export TGI_LLM_ENDPOINT="http://${your_ip}:8008"
.
curl -X POST -H "Content-Type: application/json" -d '{"path":"/home/user/doc/your_document_name","process_table":true,"table_strategy":"hq"}' http://localhost:6010/v1/dataprep