Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Testing TokamakSource generates points correctly #38

Merged
merged 8 commits into from
Jan 27, 2022
2 changes: 2 additions & 0 deletions .circleci/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ jobs:
- run:
name: install
command: |
python -m pip install --upgrade pip
python -m pip install pytest hypothesis
RemDelaporteMathurin marked this conversation as resolved.
Show resolved Hide resolved
python setup.py install
apt-get update -y && apt-get install -y curl
- run:
Expand Down
169 changes: 106 additions & 63 deletions tests/test_tokamak_source.py
Original file line number Diff line number Diff line change
@@ -1,74 +1,117 @@
from openmc_plasma_source import TokamakSource

from openmc import Source
import numpy as np

import pytest
from hypothesis import given, settings, assume, strategies as st

@st.composite
def tokamak_source_strategy(draw,return_dict=False):
RemDelaporteMathurin marked this conversation as resolved.
Show resolved Hide resolved
"""Defines a hypothesis strategy that automatically generates a TokamakSource.
When passed `return_dict=True`, only a dict of the args is passed.
Geometry attributes are varied, while plasma attributes are fixed.
"""
# Used to avoid generation of inappropriate float values
finites = {"allow_nan": False, "allow_infinity": False, "allow_subnormal": False}

# Specify the base strategies for each geometry input
minor_radius = draw(st.floats(min_value=0.0, max_value=100.0, **finites))
major_radius = draw(st.floats(min_value=0.0, max_value=100.0, **finites))
pedestal_radius = draw(st.floats(min_value=0.0, max_value=100.0, **finites))
elongation = draw(st.floats(min_value=1.0, max_value=10.0, **finites))
triangularity = draw(st.floats(min_value=-1.0, max_value=1.0, **finites))
shafranov_factor = draw(st.floats(min_value=0.0, max_value=1.0, **finites))

# Specify requirements that must be satisfied for a valid tokamak
assume(major_radius > minor_radius)
assume(minor_radius > pedestal_radius)
assume(minor_radius > shafranov_factor)

args_dict = {
"elongation" : elongation,
"triangularity" : triangularity,
"major_radius" : major_radius,
"minor_radius" : minor_radius,
"pedestal_radius" : pedestal_radius,
"shafranov_factor" : shafranov_factor,
"ion_density_centre" : 1.09e20,
"ion_density_peaking_factor" : 1,
"ion_density_pedestal" : 1.09e20,
"ion_density_separatrix" : 3e19,
"ion_temperature_centre" : 45.9,
"ion_temperature_peaking_factor" : 8.06,
"ion_temperature_pedestal" : 6.09,
"ion_temperature_separatrix" : 0.1,
"mode" : "H",
"ion_temperature_beta" : 6,
RemDelaporteMathurin marked this conversation as resolved.
Show resolved Hide resolved
}

def test_creation():
my_source = TokamakSource(
elongation=1.557,
ion_density_centre=1.09e20,
ion_density_peaking_factor=1,
ion_density_pedestal=1.09e20,
ion_density_separatrix=3e19,
ion_temperature_centre=45.9,
ion_temperature_peaking_factor=8.06,
ion_temperature_pedestal=6.09,
ion_temperature_separatrix=0.1,
major_radius=9.06,
minor_radius=2.92258,
pedestal_radius=0.8 * 2.92258,
mode="H",
shafranov_factor=0.44789,
triangularity=0.270,
ion_temperature_beta=6,
)
for source in my_source.make_openmc_sources():
return args_dict if return_dict else TokamakSource(**args_dict)


@given(tokamak_source=tokamak_source_strategy())
@settings(max_examples=1, deadline=None)
def test_creation(tokamak_source):
"""Tests that the sources generated by TokamakSource are of type openmc.Source"""
for source in tokamak_source.sources:
assert isinstance(source, Source)


def test_strengths_are_normalised():
@given(tokamak_source=tokamak_source_strategy())
@settings(max_examples=100, deadline=None)
def test_strengths_are_normalised(tokamak_source):
"""Tests that the sum of the strengths attribute is equal to"""
my_source = TokamakSource(
elongation=1.557,
ion_density_centre=1.09e20,
ion_density_peaking_factor=1,
ion_density_pedestal=1.09e20,
ion_density_separatrix=3e19,
ion_temperature_centre=45.9,
ion_temperature_peaking_factor=8.06,
ion_temperature_pedestal=6.09,
ion_temperature_separatrix=0.1,
major_radius=9.06,
minor_radius=2.92258,
pedestal_radius=0.8 * 2.92258,
mode="H",
shafranov_factor=0.44789,
triangularity=0.270,
ion_temperature_beta=6,
)
assert pytest.approx(sum(my_source.strengths), 1)


def test_angles():
assert pytest.approx(sum(tokamak_source.strengths), 1)


@given(tokamak_source=tokamak_source_strategy())
@settings(max_examples=100, deadline=None)
def test_source_locations_are_within_correct_range(tokamak_source):
RemDelaporteMathurin marked this conversation as resolved.
Show resolved Hide resolved
"""Tests that each source has RZ locations within the expected range.
As the function converting (a,alpha) coordinates to (R,Z) is not bijective, we
cannot convert back to validate each individual point. However, we can determine
whether the generated points are contained within the shell of the last closed
magnetic surface.
See "Tokamak D-T neutron source models for different plasma physics confinement
modes", C. Fausser et al., Fusion Engineering and Design, 2012 for more info.
"""
R_0 = tokamak_source.major_radius
A = tokamak_source.minor_radius
El = tokamak_source.elongation
delta = tokamak_source.triangularity

def get_R_on_LCMS(alpha):
"""Gets R on the last closed magnetic surface for a given alpha"""
return R_0 + A * np.cos(alpha + delta * np.sin(alpha))

approx_lt = lambda x,y : x < y or np.isclose(x,y)
approx_gt = lambda x,y : x > y or np.isclose(x,y)

for source in tokamak_source.sources:
R, Z = source.space.r.x[0], source.space.z.x[0]
# First test that the point is contained with a simple box with
# lower left (r_min,-z_max) and upper right (r_max,z_max)
assert approx_gt(R,R_0 - A)
assert approx_lt(R,R_0 + A)
assert approx_lt(abs(Z), A*El)
# For a given Z, we can determine the two values of alpha where
# where a = minor_radius, and from there determine the upper and
# lower bounds for R.
alpha_1 = np.arcsin(abs(Z) / (El * A))
alpha_2 = np.pi - alpha_1
R_max, R_min = get_R_on_LCMS(alpha_1), get_R_on_LCMS(alpha_2)
assert approx_lt(R_max,R_0+A)
assert approx_gt(R_min,R_0-A)
assert approx_lt(R, R_max)
assert approx_gt(R, R_min)


@given(tokamak_args_dict=tokamak_source_strategy(return_dict=True))
@settings(max_examples=1, deadline=None)
def test_angles(tokamak_args_dict):
"""Checks that custom angles can be set"""
my_source = TokamakSource(
elongation=1.557,
ion_density_centre=1.09e20,
ion_density_peaking_factor=1,
ion_density_pedestal=1.09e20,
ion_density_separatrix=3e19,
ion_temperature_centre=45.9,
ion_temperature_peaking_factor=8.06,
ion_temperature_pedestal=6.09,
ion_temperature_separatrix=0.1,
major_radius=9.06,
minor_radius=2.92258,
pedestal_radius=0.8 * 2.92258,
mode="H",
shafranov_factor=0.44789,
triangularity=0.270,
ion_temperature_beta=6,
angles=(0, 1),
)
tokamak_args_dict["angles"] = (0, 1)
tokamak_source = TokamakSource(**tokamak_args_dict)
assert tokamak_source.angles == (0, 1)
for source in tokamak_source.sources:
assert (source.space.phi.a, source.space.phi.b) == (0, 1)