-
-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
GH-162: new integration test for classifier and tagger
- Loading branch information
aakbik
committed
Oct 19, 2018
1 parent
b8dfc15
commit 2956631
Showing
1 changed file
with
252 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,252 @@ | ||
import os | ||
import shutil | ||
|
||
from flair.data import Sentence | ||
from flair.data_fetcher import NLPTaskDataFetcher, NLPTask | ||
from flair.embeddings import WordEmbeddings, CharLMEmbeddings, DocumentLSTMEmbeddings, TokenEmbeddings | ||
from flair.models import SequenceTagger, TextClassifier | ||
from flair.trainers import SequenceTaggerTrainer, TextClassifierTrainer | ||
|
||
|
||
def test_train_load_use_tagger(): | ||
|
||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.FASHION) | ||
tag_dictionary = corpus.make_tag_dictionary('ner') | ||
|
||
embeddings = WordEmbeddings('glove') | ||
|
||
tagger: SequenceTagger = SequenceTagger(hidden_size=256, | ||
embeddings=embeddings, | ||
tag_dictionary=tag_dictionary, | ||
tag_type='ner', | ||
use_crf=False) | ||
|
||
# initialize trainer | ||
trainer: SequenceTaggerTrainer = SequenceTaggerTrainer(tagger, corpus, test_mode=True) | ||
|
||
trainer.train('./results', learning_rate=0.1, mini_batch_size=2, max_epochs=3) | ||
|
||
loaded_model: SequenceTagger = SequenceTagger.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') | ||
|
||
|
||
def test_train_charlm_load_use_tagger(): | ||
|
||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.FASHION) | ||
tag_dictionary = corpus.make_tag_dictionary('ner') | ||
|
||
embeddings = CharLMEmbeddings('news-forward-fast') | ||
|
||
tagger: SequenceTagger = SequenceTagger(hidden_size=256, | ||
embeddings=embeddings, | ||
tag_dictionary=tag_dictionary, | ||
tag_type='ner', | ||
use_crf=False) | ||
|
||
# initialize trainer | ||
trainer: SequenceTaggerTrainer = SequenceTaggerTrainer(tagger, corpus, test_mode=True) | ||
|
||
trainer.train('./results', learning_rate=0.1, mini_batch_size=2, max_epochs=3) | ||
|
||
loaded_model: SequenceTagger = SequenceTagger.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') | ||
|
||
|
||
def test_train_charlm_changed_chache_load_use_tagger(): | ||
|
||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.FASHION) | ||
tag_dictionary = corpus.make_tag_dictionary('ner') | ||
|
||
# make a temporary cache directory that we remove afterwards | ||
os.makedirs('./results/cache/', exist_ok=True) | ||
embeddings = CharLMEmbeddings('news-forward-fast', cache_directory='./results/cache/') | ||
|
||
tagger: SequenceTagger = SequenceTagger(hidden_size=256, | ||
embeddings=embeddings, | ||
tag_dictionary=tag_dictionary, | ||
tag_type='ner', | ||
use_crf=False) | ||
|
||
# initialize trainer | ||
trainer: SequenceTaggerTrainer = SequenceTaggerTrainer(tagger, corpus, test_mode=True) | ||
|
||
trainer.train('./results', learning_rate=0.1, mini_batch_size=2, max_epochs=3) | ||
|
||
# remove the cache directory | ||
shutil.rmtree('./results/cache') | ||
|
||
loaded_model: SequenceTagger = SequenceTagger.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') | ||
|
||
|
||
def test_train_charlm_nochache_load_use_tagger(): | ||
|
||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.FASHION) | ||
tag_dictionary = corpus.make_tag_dictionary('ner') | ||
|
||
embeddings = CharLMEmbeddings('news-forward-fast', use_cache=False) | ||
|
||
tagger: SequenceTagger = SequenceTagger(hidden_size=256, | ||
embeddings=embeddings, | ||
tag_dictionary=tag_dictionary, | ||
tag_type='ner', | ||
use_crf=False) | ||
|
||
# initialize trainer | ||
trainer: SequenceTaggerTrainer = SequenceTaggerTrainer(tagger, corpus, test_mode=True) | ||
|
||
trainer.train('./results', learning_rate=0.1, mini_batch_size=2, max_epochs=3) | ||
|
||
loaded_model: SequenceTagger = SequenceTagger.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') | ||
|
||
|
||
def test_load_use_serialized_tagger(): | ||
|
||
loaded_model: SequenceTagger = SequenceTagger.load('ner') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
|
||
def test_train_load_use_classifier(): | ||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.IMDB) | ||
label_dict = corpus.make_label_dictionary() | ||
|
||
glove_embedding: WordEmbeddings = WordEmbeddings('en-glove') | ||
document_embeddings: DocumentLSTMEmbeddings = DocumentLSTMEmbeddings([glove_embedding], 128, 1, False, 64, False, | ||
False) | ||
|
||
model = TextClassifier(document_embeddings, label_dict, False) | ||
|
||
trainer = TextClassifierTrainer(model, corpus, label_dict, False) | ||
trainer.train('./results', max_epochs=2) | ||
|
||
sentence = Sentence("Berlin is a really nice city.") | ||
|
||
for s in model.predict(sentence): | ||
for l in s.labels: | ||
assert (l.value is not None) | ||
assert (0.0 <= l.score <= 1.0) | ||
assert (type(l.score) is float) | ||
|
||
loaded_model = TextClassifier.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') | ||
|
||
|
||
def test_train_charlm_load_use_classifier(): | ||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.IMDB) | ||
label_dict = corpus.make_label_dictionary() | ||
|
||
glove_embedding: TokenEmbeddings = CharLMEmbeddings('news-forward-fast') | ||
document_embeddings: DocumentLSTMEmbeddings = DocumentLSTMEmbeddings([glove_embedding], 128, 1, False, 64, False, | ||
False) | ||
|
||
model = TextClassifier(document_embeddings, label_dict, False) | ||
|
||
trainer = TextClassifierTrainer(model, corpus, label_dict, False) | ||
trainer.train('./results', max_epochs=2) | ||
|
||
sentence = Sentence("Berlin is a really nice city.") | ||
|
||
for s in model.predict(sentence): | ||
for l in s.labels: | ||
assert (l.value is not None) | ||
assert (0.0 <= l.score <= 1.0) | ||
assert (type(l.score) is float) | ||
|
||
loaded_model = TextClassifier.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') | ||
|
||
|
||
def test_train_charlm__nocache_load_use_classifier(): | ||
corpus = NLPTaskDataFetcher.fetch_data(NLPTask.IMDB) | ||
label_dict = corpus.make_label_dictionary() | ||
|
||
glove_embedding: TokenEmbeddings = CharLMEmbeddings('news-forward-fast', use_cache=False) | ||
document_embeddings: DocumentLSTMEmbeddings = DocumentLSTMEmbeddings([glove_embedding], 128, 1, False, 64, | ||
False, | ||
False) | ||
|
||
model = TextClassifier(document_embeddings, label_dict, False) | ||
|
||
trainer = TextClassifierTrainer(model, corpus, label_dict, False) | ||
trainer.train('./results', max_epochs=2) | ||
|
||
sentence = Sentence("Berlin is a really nice city.") | ||
|
||
for s in model.predict(sentence): | ||
for l in s.labels: | ||
assert (l.value is not None) | ||
assert (0.0 <= l.score <= 1.0) | ||
assert (type(l.score) is float) | ||
|
||
loaded_model = TextClassifier.load_from_file('./results/final-model.pt') | ||
|
||
sentence = Sentence('I love Berlin') | ||
sentence_empty = Sentence(' ') | ||
|
||
loaded_model.predict(sentence) | ||
loaded_model.predict([sentence, sentence_empty]) | ||
loaded_model.predict([sentence_empty]) | ||
|
||
# clean up results directory | ||
shutil.rmtree('./results') |