Skip to content
forked from dvl-tum/ciagan

Official PyTorch implementation of CIAGAN

License

Notifications You must be signed in to change notification settings

fengtingl/ciagan

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks

Official PyTorch implementation of CIAGAN Conditional Identity Anonymization Generative Adversarial Networks published at Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Installation

Please download the code:

To use our code, first download the repository:

git clone https://github.com/dvl-tum/ciagan.git

To install the dependencies:

pip install -r requirements.txt

Training

In order to train a CIAGAN model, run the following command:

python run_training.py

We provided an example of our dataset that contains 5 identity folders from celebA dataset in the dataset folder. To train with full celebA dataset (or your own dataset), please setup the data in the same format. For the results generated in our paper, we trained the network using 1200 identities (each of them having at least 30 images) from celebA dataset. The identities can be found in:

dataset/celeba/legit_indices.npy

Citation

If you find this code useful, please consider citing the following paper:

@InProceedings{Maximov_2020_CVPR,
author = {Maximov, Maxim and Elezi, Ismail and Leal-Taixe, Laura},
title = {CIAGAN: Conditional Identity Anonymization Generative Adversarial Networks},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

About

Official PyTorch implementation of CIAGAN

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%