Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Expose alpha and theta type for parametrized activations #1069

Merged
merged 5 commits into from
Oct 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion example-models
29 changes: 26 additions & 3 deletions hls4ml/backends/catapult/passes/core_templates.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,15 @@ def format(self, node):
typedef {table_t.name} table_t;
}};\n"""

param_activ_config_template = """struct {type}_config{index} : nnet::activ_config {{
static const unsigned n_in = {n_in};
static const unsigned table_size = {table_size};
static const unsigned io_type = nnet::{iotype};
static const unsigned reuse_factor = {reuse};
typedef {table_t.name} table_t;
typedef {param_t.name} param_t;
}};\n"""

hard_activ_config_template = """struct {type}_config{index} {{
static const unsigned n_in = {n_in};
static const {slope_t.name} slope;
Expand All @@ -140,14 +149,16 @@ def format(self, node):
}};\n"""

activ_function_template = 'nnet::{activation}<{input_t}, {output_t}, {config}>({input}, {output});'
param_activ_function_template = 'nnet::{activation}<{input_t}, {output_t}, {config}>({input}, {param}, {output});'
param_activ_function_template = (
'nnet::{activation}<{input_t}, {param_t.name}, {output_t}, {config}>({input}, {param}, {output});'
)

activ_include_list = ['nnet_utils/nnet_activation.h', 'nnet_utils/nnet_activation_stream.h']


class ActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__((Activation, ParametrizedActivation, PReLU))
super().__init__(Activation)
self.template = activ_config_template

def format(self, node):
Expand All @@ -157,6 +168,18 @@ def format(self, node):
return self.template.format(**params)


class ParamActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__((ParametrizedActivation, PReLU))
self.template = param_activ_config_template

def format(self, node):
params = self._default_config_params(node)
params['type'] = node.get_attr('activation')

return self.template.format(**params)


class HardActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__(HardActivation)
Expand Down Expand Up @@ -210,7 +233,7 @@ def __init__(self):
def format(self, node):
params = self._default_function_params(node)
params['activation'] = node.get_attr('activation').lower()
params['param'] = node.get_weights('alpha').name
params['param'] = node.get_weights('param').name
params['config'] = '{}_config{}'.format(node.get_attr('activation'), node.index)

return self.template.format(**params)
29 changes: 26 additions & 3 deletions hls4ml/backends/quartus/passes/core_templates.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,15 @@ def format(self, node):
typedef {table_t.name} table_t;
}};\n"""

param_activ_config_template = """struct {type}_config{index} : nnet::activ_config {{
static const unsigned n_in = {n_in};
static const unsigned table_size = {table_size};
static const unsigned io_type = nnet::{iotype};
static const unsigned reuse_factor = {reuse};
typedef {table_t.name} table_t;
typedef {param_t.name} param_t;
}};\n"""

hard_activ_config_template = """struct {type}_config{index} {{
static const unsigned n_in = {n_in};
static const {slope_t.name} slope;
Expand All @@ -146,14 +155,16 @@ def format(self, node):
}};\n"""

activ_function_template = 'nnet::{activation}<{input_t}, {output_t}, {config}>({input}, {output});'
param_activ_function_template = 'nnet::{activation}<{input_t}, {output_t}, {config}>({input}, {param}, {output});'
param_activ_function_template = (
'nnet::{activation}<{input_t}, {param_t.name}, {output_t}, {config}>({input}, {param}, {output});'
)

activ_include_list = ['nnet_utils/nnet_activation.h', 'nnet_utils/nnet_activation_stream.h']


class ActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__((Activation, ParametrizedActivation, PReLU, UnaryLUT))
super().__init__((Activation, UnaryLUT))
self.template = activ_config_template

def format(self, node):
Expand All @@ -163,6 +174,18 @@ def format(self, node):
return self.template.format(**params)


class ParamActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__((ParametrizedActivation, PReLU))
self.template = param_activ_config_template

def format(self, node):
params = self._default_config_params(node)
params['type'] = node.get_attr('activation')

return self.template.format(**params)


class HardActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__(HardActivation)
Expand Down Expand Up @@ -216,7 +239,7 @@ def __init__(self):
def format(self, node):
params = self._default_function_params(node)
params['activation'] = node.get_attr('activation').lower()
params['param'] = node.get_weights('alpha').name
params['param'] = node.get_weights('param').name
params['config'] = '{}_config{}'.format(node.get_attr('activation'), node.index)

return self.template.format(**params)
29 changes: 26 additions & 3 deletions hls4ml/backends/vivado/passes/core_templates.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,15 @@ def format(self, node):
typedef {table_t.name} table_t;
}};\n"""

param_activ_config_template = """struct {type}_config{index} : nnet::activ_config {{
static const unsigned n_in = {n_in};
static const unsigned table_size = {table_size};
static const unsigned io_type = nnet::{iotype};
static const unsigned reuse_factor = {reuse};
typedef {table_t.name} table_t;
typedef {param_t.name} param_t;
}};\n"""

hard_activ_config_template = """struct {type}_config{index} {{
static const unsigned n_in = {n_in};
static const {slope_t.name} slope;
Expand All @@ -138,14 +147,16 @@ def format(self, node):
}};\n"""

activ_function_template = 'nnet::{activation}<{input_t}, {output_t}, {config}>({input}, {output});'
param_activ_function_template = 'nnet::{activation}<{input_t}, {output_t}, {config}>({input}, {param}, {output});'
param_activ_function_template = (
'nnet::{activation}<{input_t}, {param_t.name}, {output_t}, {config}>({input}, {param}, {output});'
)

activ_include_list = ['nnet_utils/nnet_activation.h', 'nnet_utils/nnet_activation_stream.h']


class ActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__((Activation, ParametrizedActivation, PReLU, UnaryLUT))
super().__init__((Activation, UnaryLUT))
self.template = activ_config_template

def format(self, node):
Expand All @@ -155,6 +166,18 @@ def format(self, node):
return self.template.format(**params)


class ParamActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__((ParametrizedActivation, PReLU))
self.template = param_activ_config_template

def format(self, node):
params = self._default_config_params(node)
params['type'] = node.get_attr('activation')

return self.template.format(**params)


class HardActivationConfigTemplate(LayerConfigTemplate):
def __init__(self):
super().__init__(HardActivation)
Expand Down Expand Up @@ -208,7 +231,7 @@ def __init__(self):
def format(self, node):
params = self._default_function_params(node)
params['activation'] = node.get_attr('activation').lower()
params['param'] = node.get_weights('alpha').name
params['param'] = node.get_weights('param').name
params['config'] = '{}_config{}'.format(node.get_attr('activation'), node.index)

return self.template.format(**params)
2 changes: 1 addition & 1 deletion hls4ml/converters/keras/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def parse_activation_layer(keras_layer, input_names, input_shapes, data_reader):
elif layer['class_name'] == 'ReLU':
layer['class_name'] = 'Activation'
elif layer['class_name'] == 'PReLU':
layer['alpha_data'] = get_weights_data(data_reader, layer['name'], 'alpha')
layer['param_data'] = get_weights_data(data_reader, layer['name'], 'alpha')

if layer['class_name'] == 'Activation' and layer['activation'] == 'softmax':
layer['class_name'] = 'Softmax'
Expand Down
2 changes: 1 addition & 1 deletion hls4ml/converters/pytorch/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def parse_activation_layer(operation, layer_name, input_names, input_shapes, nod
if layer['class_name'] == 'ELU':
layer['activ_param'] = class_object.alpha
if layer['class_name'] == 'PReLU':
layer['alpha_data'] = class_object.weight.data.numpy()
layer['param_data'] = class_object.weight.data.numpy()
if layer['class_name'] == 'Threshold':
layer['activ_param'] = class_object.threshold
layer['class_name'] = 'ThresholdedReLU'
Expand Down
20 changes: 19 additions & 1 deletion hls4ml/model/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -845,6 +845,17 @@ def initialize(self):


class ParametrizedActivation(Activation):
_expected_attributes = [
Attribute('n_in'),
Attribute('activation', value_type=str),
TypeAttribute('param'),
]

def initialize(self):
super().initialize()
param_t = NamedType(*reversed(self.model.config.get_precision(self, 'param')))
self.set_attr('param_t', param_t)

def _get_act_function_name(self):
act = self.get_attr('activation').lower()
if act == 'leakyrelu':
Expand Down Expand Up @@ -882,9 +893,16 @@ def initialize(self):


class PReLU(Activation):
_expected_attributes = [
Attribute('n_in'),
Attribute('activation', value_type=str),
WeightAttribute('param'),
TypeAttribute('param'),
]

def initialize(self):
super().initialize()
self.add_weights_variable(name='alpha', var_name='a{index}')
self.add_weights_variable(name='param', var_name='a{index}')


class Softmax(Activation):
Expand Down
16 changes: 16 additions & 0 deletions hls4ml/model/optimizer/passes/infer_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,9 @@ def _infer_precision(self, node, types_to_infer):
if node_class in ['SimpleRNN', 'LSTM', 'GRU']:
return self._infer_rnn_precision(node, types_to_infer)

if node_class in ['ParametrizedActivation']:
return self._infer_par_act_precision(node, types_to_infer)

# What about quantized activation layer? Setting it to 'auto' manually will break it here. We should prevent
# this in config_from_* functions

Expand Down Expand Up @@ -557,3 +560,16 @@ def _infer_rnn_precision(self, node, types_to_infer):
inferred_types.append(f'{weightvar}_t')

return inferred_types

def _infer_par_act_precision(self, node, types_to_infer):
inferred_types = []

# For threshold relu, set the parameter precision to be the input precision by default;
# for other parametrized activations, just allow the default precision to be used.
# Can override these values in the configuration by explicitly setting them.
if 'param_t' in inferred_types and self.get_attr('activation').lower() == 'thresholdedrelu':
in_type = node.get_input_variable().type.precision
node.attributes['param_t'].type = in_type
inferred_types.append('param_t')

return inferred_types
20 changes: 10 additions & 10 deletions hls4ml/templates/catapult/nnet_utils/nnet_activation.h
Original file line number Diff line number Diff line change
Expand Up @@ -686,8 +686,8 @@ void hard_tanh(data_T data[CONFIG_T::n_in], res_T res[CONFIG_T::n_in]) {
// *************************************************
// Leaky RELU Activation
// *************************************************
template <class data_T, class res_T, typename CONFIG_T>
void leaky_relu(data_T data[CONFIG_T::n_in], data_T alpha, res_T res[CONFIG_T::n_in]) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void leaky_relu(data_T data[CONFIG_T::n_in], param_T alpha, res_T res[CONFIG_T::n_in]) {
//#pragma HLS PIPELINE

data_T datareg;
Expand All @@ -703,8 +703,8 @@ void leaky_relu(data_T data[CONFIG_T::n_in], data_T alpha, res_T res[CONFIG_T::n
// *************************************************
// Thresholded RELU Activation
// *************************************************
template <class data_T, class res_T, typename CONFIG_T>
void thresholded_relu(data_T data[CONFIG_T::n_in], data_T theta, res_T res[CONFIG_T::n_in]) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void thresholded_relu(data_T data[CONFIG_T::n_in], param_T theta, res_T res[CONFIG_T::n_in]) {
//#pragma HLS PIPELINE

data_T datareg;
Expand Down Expand Up @@ -917,8 +917,8 @@ template <typename CONFIG_T, int N_TABLE> void init_elu_table(typename CONFIG_T:

#ifndef USE_AC_MATH

template <class data_T, class res_T, typename CONFIG_T>
void elu(data_T data[CONFIG_T::n_in], const res_T alpha, res_T res[CONFIG_T::n_in]) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void elu(data_T data[CONFIG_T::n_in], const param_T alpha, res_T res[CONFIG_T::n_in]) {
// Initialize the lookup table
#ifdef __HLS_SYN__
bool initialized = false;
Expand Down Expand Up @@ -953,8 +953,8 @@ void elu(data_T data[CONFIG_T::n_in], const res_T alpha, res_T res[CONFIG_T::n_i

#else

template <class data_T, class res_T, typename CONFIG_T>
void elu(data_T data[CONFIG_T::n_in], const res_T alpha, res_T res[CONFIG_T::n_in]) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void elu(data_T data[CONFIG_T::n_in], const param_T alpha, res_T res[CONFIG_T::n_in]) {
for (int ii = 0; ii < CONFIG_T::n_in; ii++) {
ac_math::ac_elu_pwl(data[ii], res[ii], alpha);
}
Expand Down Expand Up @@ -1045,8 +1045,8 @@ template <class data_T, class res_T, typename CONFIG_T> void selu(data_T data[CO
// *************************************************
// PReLU Activation
// *************************************************
template <class data_T, class res_T, typename CONFIG_T>
void prelu(data_T data[CONFIG_T::n_in], data_T alpha[CONFIG_T::n_in], res_T res[CONFIG_T::n_in]) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void prelu(data_T data[CONFIG_T::n_in], param_T alpha[CONFIG_T::n_in], res_T res[CONFIG_T::n_in]) {
//#pragma HLS PIPELINE

data_T datareg;
Expand Down
20 changes: 10 additions & 10 deletions hls4ml/templates/catapult/nnet_utils/nnet_activation_stream.h
Original file line number Diff line number Diff line change
Expand Up @@ -545,8 +545,8 @@ template <class data_T, class res_T, typename CONFIG_T> void hard_tanh(ac_channe
// *************************************************
// Leaky RELU Activation
// *************************************************
template <class data_T, class res_T, typename CONFIG_T>
void leaky_relu(ac_channel<data_T> &data, typename data_T::value_type alpha, ac_channel<res_T> &res) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void leaky_relu(ac_channel<data_T> &data, param_T alpha, ac_channel<res_T> &res) {
LeakyReLUActLoop:
for (int i = 0; i < CONFIG_T::n_in / res_T::size; i++) {
//#pragma HLS PIPELINE
Expand All @@ -571,8 +571,8 @@ void leaky_relu(ac_channel<data_T> &data, typename data_T::value_type alpha, ac_
// Thresholded RELU Activation
// *************************************************

template <class data_T, class res_T, typename CONFIG_T>
void thresholded_relu(ac_channel<data_T> &data, typename data_T::value_type theta, ac_channel<res_T> &res) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void thresholded_relu(ac_channel<data_T> &data, param_T theta, ac_channel<res_T> &res) {
ThresholdedReLUActLoop:
for (int i = 0; i < CONFIG_T::n_in / res_T::size; i++) {
//#pragma HLS PIPELINE
Expand Down Expand Up @@ -720,8 +720,8 @@ template <class data_T, class res_T, typename CONFIG_T> void softsign(ac_channel

#ifndef USE_AC_MATH

template <class data_T, class res_T, typename CONFIG_T>
void elu(ac_channel<data_T> &data, typename data_T::value_type alpha, ac_channel<res_T> &res) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void elu(ac_channel<data_T> &data, param_T alpha, ac_channel<res_T> &res) {
// Initialize the lookup table
#ifdef __HLS_SYN__
bool initialized = false;
Expand Down Expand Up @@ -763,8 +763,8 @@ void elu(ac_channel<data_T> &data, typename data_T::value_type alpha, ac_channel
}

#else
template <class data_T, class res_T, typename CONFIG_T>
void elu(ac_channel<data_T> &data, typename data_T::value_type alpha, ac_channel<res_T> &res) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void elu(ac_channel<data_T> &data, param_T alpha, ac_channel<res_T> &res) {
EluActLoop:
for (int i = 0; i < CONFIG_T::n_in / res_T::size; i++) {
data_T in_data = data.read();
Expand Down Expand Up @@ -845,8 +845,8 @@ template <class data_T, class res_T, typename CONFIG_T> void selu(ac_channel<dat
// *************************************************
// PReLU Activation
// *************************************************
template <class data_T, class res_T, typename CONFIG_T>
void prelu(ac_channel<data_T> &data, typename data_T::value_type alpha[CONFIG_T::n_in], ac_channel<res_T> &res) {
template <class data_T, class param_T, class res_T, typename CONFIG_T>
void prelu(ac_channel<data_T> &data, const param_T alpha[CONFIG_T::n_in], ac_channel<res_T> &res) {
PReLUActLoop:
for (int i = 0; i < CONFIG_T::n_in / res_T::size; i++) {
//#pragma HLS PIPELINE
Expand Down
Loading
Loading