-
Notifications
You must be signed in to change notification settings - Fork 421
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1153 from JanFSchulte/split_pytests
Split hgq tests and isolate qkeras tests to make tests run in under 1h
- Loading branch information
Showing
3 changed files
with
174 additions
and
88 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
from pathlib import Path | ||
|
||
import HGQ # noqa: F401 | ||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from HGQ import get_default_paq_conf, set_default_paq_conf, trace_minmax | ||
from HGQ.layers import ( # noqa: F401 | ||
HConv1D, | ||
HDense, | ||
HQuantize, | ||
PAvgPool1D, | ||
PAvgPool2D, | ||
PConcatenate, | ||
PFlatten, | ||
PMaxPool1D, | ||
PMaxPool2D, | ||
PReshape, | ||
Signature, | ||
) | ||
from HGQ.proxy import to_proxy_model | ||
from HGQ.proxy.fixed_point_quantizer import gfixed | ||
from tensorflow import keras | ||
|
||
from hls4ml.converters import convert_from_keras_model | ||
|
||
# tf.config.experimental_run_functions_eagerly(True) # noqa | ||
|
||
|
||
test_path = Path(__file__).parent | ||
|
||
|
||
def _run_synth_match_test(proxy: keras.Model, data, io_type: str, backend: str, dir: str, cond=None): | ||
|
||
output_dir = dir + '/hls4ml_prj' | ||
hls_model = convert_from_keras_model( | ||
proxy, | ||
io_type=io_type, | ||
output_dir=output_dir, | ||
backend=backend, | ||
hls_config={'Model': {'Precision': 'fixed<1,0>', 'ReuseFactor': 1}}, | ||
) | ||
hls_model.compile() | ||
|
||
data_len = data.shape[0] if isinstance(data, np.ndarray) else data[0].shape[0] | ||
# Multiple output case. Check each output separately | ||
if len(proxy.outputs) > 1: # type: ignore | ||
r_proxy: list[np.ndarray] = [x.numpy() for x in proxy(data)] # type: ignore | ||
r_hls: list[np.ndarray] = hls_model.predict(data) # type: ignore | ||
r_hls = [x.reshape(r_proxy[i].shape) for i, x in enumerate(r_hls)] | ||
else: | ||
r_proxy: list[np.ndarray] = [proxy(data).numpy()] # type: ignore | ||
r_hls: list[np.ndarray] = [hls_model.predict(data).reshape(r_proxy[0].shape)] # type: ignore | ||
|
||
errors = [] | ||
for i, (p, h) in enumerate(zip(r_proxy, r_hls)): | ||
try: | ||
if cond is None: | ||
mismatch_ph = p != h | ||
assert ( | ||
np.sum(mismatch_ph) == 0 | ||
), f"Proxy-HLS4ML mismatch for out {i}: {np.sum(np.any(mismatch_ph, axis=1))} out of {data_len} samples are different. Sample: {p[mismatch_ph].ravel()[:5]} vs {h[mismatch_ph].ravel()[:5]}" # noqa: E501 | ||
else: | ||
cond(p, h) | ||
except AssertionError as e: | ||
errors.append(e) | ||
if len(errors) > 0: | ||
msgs = [str(e) for e in errors] | ||
raise AssertionError('\n'.join(msgs)) | ||
|
||
|
||
def run_model_test( | ||
model: keras.Model, cover_factor: float | None, data, io_type: str, backend: str, dir: str, aggressive: bool, cond=None | ||
): | ||
data_len = data.shape[0] if isinstance(data, np.ndarray) else data[0].shape[0] | ||
if cover_factor is not None: | ||
trace_minmax(model, data, cover_factor=cover_factor, bsz=data_len) | ||
proxy = to_proxy_model(model, aggressive=aggressive, unary_lut_max_table_size=4096) | ||
_run_synth_match_test(proxy, data, io_type, backend, dir, cond=cond) | ||
|
||
|
||
def create_player_model(layer: str, rnd_strategy: str, io_type: str): | ||
pa_config = get_default_paq_conf() | ||
pa_config['rnd_strategy'] = rnd_strategy | ||
pa_config['skip_dims'] = 'all' if io_type == 'io_stream' else 'batch' | ||
set_default_paq_conf(pa_config) | ||
|
||
inp = keras.Input(shape=(15)) | ||
if 'PConcatenate' in layer: | ||
_inp = [HQuantize()(inp)] * 2 | ||
out = eval(layer)(_inp) | ||
out = HDense(15)(out) | ||
return keras.Model(inp, out) | ||
elif 'Signature' in layer: | ||
_inp = eval(layer)(inp) | ||
out = HDense(15)(_inp) | ||
return keras.Model(inp, out) | ||
elif 'Pool2D' in layer: | ||
_inp = PReshape((3, 5, 1))(HQuantize()(inp)) | ||
elif 'Pool1D' in layer: | ||
_inp = PReshape((5, 3))(HQuantize()(inp)) | ||
elif 'Dense' in layer or 'Activation' in layer: | ||
_inp = HQuantize()(inp) | ||
elif 'Flatten' in layer: | ||
out = HQuantize()(inp) | ||
out = PReshape((3, 5))(out) | ||
out = HConv1D(2, 2)(out) | ||
out = eval(layer)(out) | ||
out = HDense(15)(out) | ||
return keras.Model(inp, out) | ||
else: | ||
raise Exception(f'Please add test for {layer}') | ||
|
||
out = eval(layer)(_inp) | ||
model = keras.Model(inp, out) | ||
|
||
for layer in model.layers: | ||
# No weight bitwidths to randomize | ||
# And activation bitwidths | ||
if hasattr(layer, 'paq'): | ||
fbw: tf.Variable = layer.paq.fbw | ||
fbw.assign(tf.constant(np.random.uniform(4, 6, fbw.shape).astype(np.float32))) | ||
|
||
return model | ||
|
||
|
||
def get_data(shape: tuple[int, ...], v: float, max_scale: float): | ||
rng = np.random.default_rng() | ||
a1 = rng.uniform(-v, v, shape).astype(np.float32) | ||
a2 = rng.uniform(0, max_scale, (1, shape[1])).astype(np.float32) | ||
return (a1 * a2).astype(np.float32) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
'layer', | ||
[ | ||
"PConcatenate()", | ||
"PMaxPool1D(2, padding='same')", | ||
"PMaxPool1D(4, padding='same')", | ||
"PMaxPool2D((5,3), padding='same')", | ||
"PMaxPool1D(2, padding='valid')", | ||
"PMaxPool2D((2,3), padding='valid')", | ||
"Signature(1,6,3)", | ||
"PAvgPool1D(2, padding='same')", | ||
"PAvgPool2D((1,2), padding='same')", | ||
"PAvgPool2D((2,2), padding='same')", | ||
"PAvgPool1D(2, padding='valid')", | ||
"PAvgPool2D((1,2), padding='valid')", | ||
"PAvgPool2D((2,2), padding='valid')", | ||
"PFlatten()", | ||
], | ||
) | ||
@pytest.mark.parametrize("N", [1000]) | ||
@pytest.mark.parametrize("rnd_strategy", ['floor', 'standard_round']) | ||
@pytest.mark.parametrize("io_type", ['io_parallel', 'io_stream']) | ||
@pytest.mark.parametrize("cover_factor", [1.0]) | ||
@pytest.mark.parametrize("aggressive", [True, False]) | ||
@pytest.mark.parametrize("backend", ['vivado', 'vitis']) | ||
def test_syn_players(layer, N: int, rnd_strategy: str, io_type: str, cover_factor: float, aggressive: bool, backend: str): | ||
model = create_player_model(layer=layer, rnd_strategy=rnd_strategy, io_type=io_type) | ||
data = get_data((N, 15), 7, 1) | ||
|
||
path = test_path / f'hls4mlprj_hgq_{layer}_{rnd_strategy}_{io_type}_{aggressive}_{backend}' | ||
|
||
if 'Signature' in layer: | ||
q = gfixed(1, 6, 3) | ||
data = q(data).numpy() | ||
if "padding='same'" in layer and io_type == 'io_stream': | ||
pytest.skip("io_stream does not support padding='same' for pools at the moment") | ||
|
||
run_model_test(model, cover_factor, data, io_type, backend, str(path), aggressive) |